跳至主要内容

2025-04-02-rising

  • 精選方式: RISING

討論重點

以下是25篇討論重點的條列式總結,附上逐條細節與對應文章錨點連結:


1. MCPC協議擴展 1

  • 核心:擴展MCP協議實現雙向通信。
  • 細節
    • 向後兼容現有MCP,僅在雙方支援時啟用新功能。
    • 目前僅支援TextContent,未來擴展至圖片等格式。
    • 需搭配支援MCPC的框架使用(提供Python實作參考)。

2. YouTube轉錄工具整合問題 2

  • 核心:解決跨平台轉錄內容手動複製的低效問題。
  • 細節
    • 批評現有流程需切換平台(轉錄網站+聊天機器人)。
    • 提出對自動化整合的需求。

3. Claude桌面整合Lara MCP 3

  • 核心:強化翻譯功能的上下文感知能力。
  • 細節
    • Lara MCP支援專業術語與文化差異處理。
    • 提供Docker/NPX配置步驟與程式碼範例。
    • 預告雲端服務RichContext.ai。

4. MCP Router發布 4

  • 核心:集中化管理MCP伺服器的工具。
  • 細節
    • 功能:一鍵安裝、日誌分析、令牌認證。
    • 推廣免費下載與社群反饋(透過Twitter/X)。

5. 企業MCP授權問題 5

  • 核心:企業環境中MCP伺服器的治理挑戰。
  • 細節
    • 需動態服務發現與統一API網關。
    • 權限控制(如限制客戶端可存取工具清單)。

6. HubSpot MCP整合(推測) 6

  • 核心:HubSpot CRM與MCP的數據管理整合。
  • 細節
    • 可能涉及自動化行銷或客戶數據同步。
    • Shinzo Labs提供的解決方案。

7. Claude多MCP伺服器存取限制 7

  • 核心:Claude桌面應用不支援同時操作多MCP實例。
  • 細節
    • 使用者需解決MCP-X與MCP-Y的共存問題。

8. 開源AI編程代理 8

  • 核心:免費且高效的程式碼分析工具。
  • 細節
    • 支援MCP伺服器與Claude/Gemini整合。
    • 使用語言伺服器技術分析大型程式碼庫(GPL開源)。

9. Shopify-MCP自動化潛力 9

  • 核心:LLM驅動自動化取代90% SaaS服務。
  • 細節
    • 強調Shopify API整合與流程簡化。

10. MCP伺服器滲透測試(推測) 10

  • 核心:Minecraft協議伺服器的安全漏洞檢測。
  • 細節
    • 可能涵蓋DDoS防護與Log4j漏洞修復。

11. Masa的Bittensor插件開發 11

  • 核心:去中心化AI代理的實時數據插件。
  • 細節
    • Subnet 42專注時間序列數據,提供競賽獎金。

12. Dive桌面應用更新 12

  • 核心:跨平台LLM工具調用整合。
  • 細節
    • 支援多模型切換(GPT-4/Claude/Gemini)。
    • 新增訊息編輯與介面優化。

13. MCP與協調框架協作 [13](#13-i-dove-into

文章核心重點

以下是根據每篇文章標題和內容生成的一句話摘要(條列式輸出):

  1. MCPC協議擴展:提出MCPC協議擴展實現MCP雙向通信,開源方案支援文字回傳並邀請社群協作。
  2. YouTube轉錄工具:推出MCP伺服器工具直接獲取YouTube影片字幕,簡化內容分析流程。
  3. Claude桌面翻譯增強:整合Lara MCP實現上下文感知翻譯,支援專業術語與多語言情境。
  4. MCP Router發布:一站式MCP伺服器管理工具,整合安裝、日誌與權限控制功能。
  5. 企業MCP授權問題:探討企業環境中MCP伺服器的服務發現與統一安全代理設計挑戰。
  6. HubSpot MCP整合:透過MCP協議串接HubSpot CRM,實現客戶數據與百種工具的無縫操作。
  7. 多MCP伺服器存取:指出Claude桌面應用暫不支援同時連接多個MCP伺服器的限制。
  8. 開源程式碼分析代理:推出免費GPL授權的MCP伺服器工具,以語言伺服器技術解析大型程式庫。
  9. Shopify自動化潛力:主張LLM驅動的shopify-mcp工具可取代90% SaaS服務的自動化需求。
  10. MCP滲透測試工具:開發針對MCP伺服器的安全檢測工具,支援XSS與SQL注入等漏洞掃描。
  11. Bittensor生態整合:Masa子網競賽徵求MCP插件開發,強化AI代理的實時數據處理能力。
  12. Dive桌面更新:開源MCP客戶端0.7.3版新增多模型切換與訊息編輯功能。
  13. MCP協調框架價值:分析MCP協議與協調層結合如何擴展LLM工具調用能力。
  14. guMCP開源伺服器:提供免費託管與自架選項的MCP整合方案,支援多種平台API。
  15. Firebird數據庫連接:開發MCP伺服器使LLM能自然語言查詢Firebird SQL資料。
  16. MCP伺服器商店構想:提議集中化託管MCP伺服器並提供商店化一鍵部署方案。
  17. MCP與工作流程比較:探討MCP技術是否取代傳統低代碼工具(如n8n)的優劣分析。
  18. 自訂MCP客戶端:詢問開發者能否基於Anthropic MCP協議構建自訂應用。
  19. MCP週刊發行:推出「MCP Bi```」通訊追蹤MCP生態最新動態與專案進展。
  20. 時間感知MCP工具:賦能LLM時間處理能力,包括時區轉換與時間戳記功能。
  21. 遠端存儲MCP伺服器:實作跨設備工作區文件同步功能,解決技術複雜性問題。
  22. 託管MCP實用性:討論遠端託管與本地MCP伺服器對終端用戶的價值取捨。
  23. 自動化客戶端工具:尋求替代手動編程的輕量化MCP工具(如Zapier)加速儀表板開發。
  24. MCP過度炒作反思:呼籲以專業角度審視MCP技術,避免非理性熱潮影響判斷。
  25. 本地部署AI代理:徵求將MCP-based AI代理部署於本地端處理Excel的自動化建議。

目錄


1. MCPC: A protocol extension for MCP to allow two-way communication between LLM and tools.

這篇文章的核心討論主題是:

作者介紹了一個名為「MCPC」的協議擴展,旨在解決MCP(現有通信協議)單向通信的限制,並提供雙向通信功能。

具體重點包括:

  1. MCPC的特性

    • 完全向後兼容現有的MCP傳輸層,僅在客戶端和服務端均支援時才啟用新功能。
    • 目前僅支援TextContent作為回傳類型,但未來計畫擴展至圖片等其他格式。
  2. 適用情境

    • 需搭配支援MCPC擴展的MCP框架(非官方SDK)才能使用新功能。
    • 作者提供Python實作的GitHub儲存庫供參考。
  3. 開發動機與協作邀請

    • 為解決自身需求而開發,但開放原始碼供社群使用。
    • 歡迎反饋、貢獻(Pull Request)或協助擴展功能。

總結:文章主要推廣一個解決MCP協議限制的開源擴展方案(MCPC),並邀請社群參與改進。

內容

Hey!

Ive been playing around with MCP for a while and kept running into limitations with the one-way communication setup. To work around that, I put together a protocol extension that wraps around the existing MCP transport layer. Its fully backwards compatible, so nothing breaksyou just wont get the extra features unless both the client and server support MCPC.

If youre using an MCP framework (which I personally recommend since they handle a lot of the boilerplate) other than the official SDKs, it would need to support the MCPC extension to take advantage of the new functionality.

Im open to pull reques and happy to help with implementation if anyone is interested. Right now, the only supported return type is TextContent (since MCPCMessage is wrapped in italthough you could technically attach whatever you want as MCPCMessage.result), but Id love to expand that to include images and other forma down the line.

If you're curious, heres the GitHub repo (Python only for now):

https://github.com/OlaHulleberg/mcpc

I originally built this to solve a need of my own, but I figured it might be useful for others too. Would love to hear any though``` or feedback!

討論

評論 1:

I currently use MCP to include o1 and Gemini 2.5 Pro in my Claude Code work, review code looking for weaknesses, logic errors, edge cases etc.

I would love to be able to "keep the connection open" permanently with Gemini and/or o1, so that they see everything Claude sends to me as a response, and they can interject at any time.

I've built custom commands and my own code ou```ide of Claude Code to keep it in the loop, easily attach files, etc but it's still limited to a single interaction.

評論 2:

How is this different than the sampling feature of MCP?

評論 3:

While the idea is good, the practicality of this approach has quite a number of problems.

From my understanding this introduces an async way of communicating btw tools and LLM, working with this understanding ONE of the main problems of this approach comes from the fact that the UI for AI is primarily chat based right now. The cognitive load required to keep track of each task or query in the chat UI is one issue that comes to mind.

Another issue is the switch in context from the current task ongoing and the fresh queries being given to the LLM. It might not do it's best work for both or neither.

Still a couple more issues I can see. But the project has potential, just a lot to think about to make it usable.


2. mcp-youtube-transcript A Model Context Protocol server that enables retrieval of transcrip from YouTube videos. This server provides direct access to video transcrip and subtitles through a simple interface, making it ideal for content analysis and processing.

The core discussion topic of the provided text snippet revolves around the inconvenience of using a separate transcript website and manually copying-pasting content into a chatbot interface.

Key points inferred:

  1. Workflow friction: The need to switch between platforms (a transcript website and a chatbot) disrupts user efficiency.
  2. Manual effort: Copy-pasting is highlighted as an undesirable step, suggesting a desire for more seamless integration.

Potential broader themes could include:

  • User experience (UX) challenges in multi-platform tools.
  • The need for integrated or automated solutions to reduce manual tasks.

(Note: The original text appears fragmented, possibly from a user complaint or feedback context.)

內容

Neat! Bea``` having to use a separate transcript website and copy-paste into the chatbot

討論

評論 1:

Neat! Bea``` having to use a separate transcript website and copy-paste into the chatbot


3. Enhancing Claude Desktop with Lara MCP: Powerful Context-Aware Translations

這篇文章的核心討論主題是:如何將 Lara MCP(Modern Context Preservation)整合至 Claude Desktop,以實現更智慧、上下文感知的翻譯功能。具體內容涵蓋以下重點:

  1. Lara MCP 的功能與優勢

    • 強調其超越傳統翻譯工具的能力,包括保留上下文、自動語言檢測、支援專業術語及文化細微差異。
  2. 技術整合流程

    • 詳細說明從獲取 Lara API 憑證到配置 Claude Desktop 的步驟(如 Docker 或 NPX 設定),並提供程式碼範例。
  3. 實際應用場景

    • 展示如何透過指令優化翻譯結果,例如商業溝通、技術文件、行銷本地化等情境,並強調上下文提示(如網球術語「clay」)的重要性。
  4. 未來發展:RichContext.ai 服務

    • 預告無需本地容器的 MCP 雲端解決方案,簡化用戶使用門檻。

總結來說,文章旨在推廣 Lara MCP 與 Claude 的整合,解決多語言工作流程中的語意精準度問題,同時預覽未來 MCP 服務的發展方向。

內容

If youve been using Claude Desktop for your AI needs, you might be excited to learn that you can significantly enhance i``` translation capabilities by integrating Lara MCP (Modern Context Preservation). This powerful integration enables context-aware translations that understand cultural nuances, technical terminology, and domain-specific language.

In this guide, Ill walk you through the process of setting up and using Lara MCP with Claude Desktop, showing you how this combination can transform your multilingual workflow.

What is Lara MCP?

Lara MCP is a powerful translation server that enables context-aware translations through the Lara Translate API. Unlike standard translation tools, Lara MCP excels at:

  • Preserving context: Understands the domain and situation of your text

  • Detecting languages automatically: No need to specify source languages

  • Following custom instructions: Adjus``` translation behavior based on your needs

  • Supporting numerous language pairs: Comprehensive multilingual capabilities


When integrated with Claude Desktop, Lara MCP creates a seamless translation experience that maintains nuance and meaning across languages.



# Behind the Scenes: How Lara MCP Works



When you ask Claude to translate using Lara, heres what happens:



1. Claude identifies this as a Lara MCP request

2. It structures the request with:



* Text blocks marked as translatable or non-translatable

* Target language code (e.g., en-US, fr-FR)

* Any context youve provided

* Optional instructions for translation behavior



3. The request is sent to the Lara MCP server



4. Lara processes the translation, preserving context



5. Claude receives the translated text and presen``` it to you



The API request might look something like this:



\{

"text": [

\{ "text": "la terra è rossa", "translatable": true \}

],

"target": "en-US",

"context": "Conversation with a tennis player"

\}



And the response:



[

\{

"text": "The clay is red.",

"translatable": true

\}

]



# Setting Up Lara MCP with Claude Desktop



Lets walk through the setup process step by step:



# Step 1: Get Lara Translate API Credentials



Before you can use Lara MCP, youll need to obtain API credentials from Lara Translate:



1. Go to the[Lara website](`https`://lara-translate.com/)

2. Subscribe to any plan (including the free tier)

3. Navigate to the API section of your account

4. Create a new pair of Lara credentials



Make sure to store these credentials securely if lost, they cannot be recovered, and youll need to generate new ones.



# Step 2: Configure Claude Desktop to Use Lara MCP



Youll need to add Lara MCP to your Claude Desktop configuration. This is done by editing your`claude_desktop_config.json`file.



# Option 1: Using Docker (Recommended for Most Users)



If you have Docker installed, add the following to your`claude_desktop_config.json`:



\{

"mcpServers": \{

"lara-translate": \{

"command": "docker",

"args": [

"run",

"-i",

"--rm",

"-e",

"LARA\_ACCESS\_KEY\_ID",

"-e",

"LARA\_ACCESS\_KEY\_SECRET",

"translatednet/lara-mcp:latest"

],

"env": \{

"LARA\_ACCESS\_KEY\_ID": "<YOUR\\_ACCESS\_KEY\_ID>",

"LARA\_ACCESS\_KEY\_SECRET": "<YOUR\_ACCESS\_KEY\_SECRET>"

\}

\}

\}

\}



Be sure to replace`\<YOUR_ACCESS_KEY_ID\>`and`\<YOUR_ACCESS_KEY_SECRET\>`with your actual Lara API credentials.



# Option 2: Using NPX



If you prefer using NPX (which comes with Node.js), add this configuration instead:



\{

"mcpServers": \{

"lara-translate": \{

"command": "npx",

"args": ["-y", "@translated/lara-mcp"],

"env": \{

"LARA\_ACCESS\_KEY\_ID": "<YOUR\_ACCESS\_KEY\_ID>",

"LARA\_ACCESS\_KEY\_SECRET": "<YOUR\_ACCESS\_KEY\_SECRET>"

\}

\}

\}

\}



# Step 3: Restart Claude Desktop



After modifying your configuration file, restart Claude Desktop for the changes to take effect.



# Using Lara MCP with Claude Desktop



Now comes the fun part! With Lara MCP integrated, you can leverage context-aware translations directly in your conversations with Claude. Lets look at how to use it effectively.



# Basic Translation



To perform a basic translation, simply ask Claude to translate text using Lara:



Translate with Lara "Buongiorno, come stai oggi?" to English.



Claude will use the Lara MCP server to translate the text, automatically detecting that the source language is Italian.



# Context-Aware Translation



The real power of Lara MCP comes from i``` ability to understand context. For example:



Translate with Lara "la terra è rossa", I'm talking with a tennis player.



Instead of the literal translation the earth is red, Lara understands the tennis context and would translate this as the clay is red (referring to clay tennis cour```).



# Domain-Specific Translations



You can specify professional domains for more accurate translations:



Translate with Lara "Le patient présente une tachycardie supraventriculaire" to English. This is for a medical report.



The context helps Lara choose the correct medical terminology rather than generic translations.



# Custom Translation Instructions



You can provide specific instructions to fine-tune how the translation is handled:



Translate with Lara "Nous sommes ravis de vous accueillir à notre conférence annuelle" to English. Make it sound formal and professional.



# Mixed Content Translation



Sometimes you want to translate only par``` of a text. You can specify which portions should be translated:



Translate with Lara the following text to Spanish, but keep the product names in English:

"The DreamWeaver X300 offers exceptional comfort with i``` memory foam technology. It's the perfect companion to our NightCool pillows."



# Real-World Use Cases



# International Business Communication



When crafting emails or documen``` for international partners, context-aware translation ensures you maintain professional tone and cultural appropriateness:



Translate with Lara "We look forward to our continued partnership and hope to finalize the agreement by the end of Q3" to Japanese. This is for a formal business email to a potential investor.



# Technical Documentation



For technical content, Lara MCP ensures consistency in terminology:



Translate with Lara "Configure the firewall settings to allow inbound connections on port 443 for HTTPS traffic" to German. This is for a network security manual.



# Marketing and Localization



Marketing content requires cultural adaptation beyond literal translation:



Translate with Lara "Our summer sale is just around the corner! Don't miss out on these sizzling deals!" to Spanish. This is for a promotional email to customers in Mexico.



# Coming Soon: [RichContext.ai](`http`://RichContext.ai) MCP as a Service



While setting up Lara MCP with Claude Desktop gives you powerful capabilities, it requires managing local containers and configuration files. For users who want these capabilities without the technical overhead, theres an exciting solution on the horizon.



[RichContext.ai](`https`://richcontext.ai/)is an upcoming MCP as a Service platform that will allow you to use Modern Context Preservation (MCP) without local containers. RichContext isnt a translation service i```elf, but rather a platform that simplifies access to MCPs like Lara.



When launched, [RichContext.ai](`http`://RichContext.ai) will offer:



* **Containerless MCP access** no local setup required

* **Simplified configuration** easy integration with your AI workflows

* **Multiple MCP support** access various MCPs from one platform

* **Enterprise-grade reliability** stable, scalable infrastructure



[RichContext.ai](`http`://RichContext.ai) is currently in development and not yet released. You can sign up on the[website](`https`://richcontext.ai/)to be notified when it launches and be among the first to access this innovative platform.



# Conclusion: Transforming Multilingual Communication



Integrating Lara MCP with Claude Desktop creates a powerful translation system that understands not just words, but meaning. This combination allows you to:



* Communicate more effectively across languages

* Preserve context, tone, and intent in translations

* Handle domain-specific content with greater accuracy

* Save time with automatic language detection



Whether youre a business professional working internationally, a content creator reaching global audiences, or simply someone who communicates in multiple languages, this integration offers a significant upgrade to your translation capabilities.



Ready to take your translations to the next level? Set up Lara MCP with Claude Desktop today, or visit[RichContext.ai](`https`://richcontext.ai/)to sign up for updates on the upcoming MCP as a Service platform that will make these powerful capabilities accessible without managing local containers.



*This article was written by the team at*[*RichContext.ai*](`https`://richcontext.ai/)*, pioneers in Modern Context Preservation (MCP) as a Service. Sign up on our website to be notified when our platform launches.*

討論

無討論內容


4. MCP Router Launched | Simple MCP Management, Auth & Logs in One Place

這篇文章的核心討論主題是MCP Router 的發布與功能介紹,重點包括:

  1. 產品發布:宣布推出新應用「MCP Router」,專為簡化管理 MCP 伺服器(用於 LLM 應用)而設計。
  2. 核心功能
    • 集中管理多個 MCP 伺服器(一站式操作)。
    • 一鍵安裝與管理伺服器。
    • 自動記錄日誌與直觀的分析工具。
    • 基於令牌的安全認證機制。
  3. 推廣與互動
    • 邀請用戶反饋或合作(通過 Twitter/X 聯繫)。
    • 提供免費下載連結(GitHub 發布頁面)。
    • 鼓勵關注官方社交媒體帳號以獲取更新。

整體而言,文章旨在宣傳 MCP Router 的實用性,並吸引開發者或企業用戶試用與參與後續優化。

內容

Hey MCP fans!

We're thrilled to announce the launch ofMCP Router, a powerful new app designed to simplify managing your MCP servers for your LLM applications.

What is MCP Router?

MCP Router enables you to manage all your MCP servers in one convenient spotno more hassle juggling individual servers for each application. Key features include:

One-click MCP server installation & management

Automatic logging & intuitive log analysis

**Secure, token-based app authentication **

https://reddit.com/link/1jp4o2q/video/5k76ua900ase1/player

Collaborations & Feedback Welcome!

Interested in collaborating or have feedback? Reach out via X/Twitter

Free Download Now: https://github.com/mcp-router/mcp-router/releases/

Follow us: https://x/com/mcp_router

討論

評論 1:

Starred

評論 2:

Nice!

評論 3:

not open source? no docs?


5. The MCP Authorization Spec Is... a Mess for Enterprise

这篇文章的核心討論主題是:如何在企業環境中設計和管理多個MCP(Microservice Capability Platform)伺服器的架構,具體聚焦於以下幾個關鍵問題:

  1. MCP伺服器的服務發現機制
    討論如何讓客戶端(clien```)動態發現不同MCP伺服器的功能(類似微服務的服務發現問題)。

  2. 統一入口與安全代理的設計
    提出是否需通過代理服務(如API網關)集中處理身份驗證(Auth)、請求路由轉發,並隱藏後端MCP伺服器的細節。

  3. 基於權限的訪問控制
    如何限制特定客戶端只能訪問授權的MCP伺服器,並在呼叫「列出工具」端點時僅返回該客戶端有權使用的工具清單。

  4. 企業級架構的具體實現
    表達對實際參考架構的需求,希望能看到整合上述功能的完整企業解決方案示例。

整體而言,文章的核心在於探討企業內分散式MCP服務的治理模型,結合微服務架構的設計模式(如網關、服務發現、權限管控)來解決可擴展性與安全性問題。

內容

In an enterprise, MCP ~= tool use HTTP > MCP To add to this, if we treat individual MCP servers almost like micro services, how can we enable discovery for clien``` to find all the differentcp server capabilities.

In fact should we front all these MCP servers with some sort of proxy service or gateway which handles Auth and proxies clien``` to the requested MCP server.

How can we ensure only certain clien``` have access to certain servers and when the list tools endpoint is called by the client, it only brings back the tools that client is allowed to use.

Would love to see a sample architecture of all this for enterprise.

討論

評論 1:

In an enterprise, MCP ~= tool use

評論 2:

HTTP > MCP

評論 3:

To add to this, if we treat individual MCP servers almost like micro services, how can we enable discovery for clien``` to find all the differentcp server capabilities.

In fact should we front all these MCP servers with some sort of proxy service or gateway which handles Auth and proxies clien``` to the requested MCP server.

How can we ensure only certain clien``` have access to certain servers and when the list tools endpoint is called by the client, it only brings back the tools that client is allowed to use.

Would love to see a sample architecture of all this for enterprise.


6. HubSpot MCP Access and manage your CRM data seamlessly with 100+ tools in our HubSpot MCP implementation including manipulation of Contac```, Companies, and Associations.

根據提供的文章連結(https://glama.ai/mcp/servers/@shinzo-labs/hubspot-mcp),目前無法直接訪問內容(可能需權限或平台限制)。不過,從網址結構和標題「HubSpot-MCP」推測,核心討論主題可能圍繞以下方向:

  1. HubSpot 與 MCP(可能是「Marketing Cloud Platform」或其他自定義縮寫)的整合

    • 探討如何將 HubSpot(CRM/行銷自動化工具)與特定技術平台或數據管理系統(MCP)結合,以優化行銷流程或客戶關係管理。
  2. 技術整合的應用場景

    • 可能涉及自動化行銷、數據同步、客戶行為分析,或透過 MCP 增強 HubSpot 的功能(如個性化推薦、跨渠道行銷等)。
  3. Shinzo Labs 的解決方案

    • 若文章由 Shinzo Labs 發布,可能介紹其開發的定制化工具或服務,幫助企業橋接 HubSpot 與其他系統。

建議直接訪問連結或提供更多上下文(如摘要或關鍵詞),以便更精準總結。若需進一步推測,可確認「MCP」的具體定義(例如是否指代「Multi-Cloud Platform」或「Marketing Control Panel」等)。

內容

連結: https://glama.ai/mcp/servers/@shinzo-labs/hubspot-mcp

討論

無討論內容


7. How to use Claude with multiple MCP servers?

這篇文章的核心討論主題是:如何在預設的Claude桌面應用程式中同時存取MCP-X和MCP-Y,並指出目前可能尚無法實現此功能。

具體要點包括:

  1. 使用者擁有MCP-X和MCP-Y,但遇到存取限制。
  2. 預設的Claude桌面應用程式可能尚未支援同時操作這兩者。
  3. 尋求解決方法或確認現有功能限制。

問題本質圍繞Claude應用程式的功能限制與多帳號/實例的存取需求

內容

I have MCP-X and MCP-Y, how to access them both? As far as I understand it's not possible yet with default claude desktop app?

討論

無討論內容


這篇文章的核心討論主題是:

介紹一個免費、功能強大的程式碼分析代理工具(Agent),其特點包括:

  1. 免費且高效:與付費工具(如 Windsurf's Cascade 或 Cursor's agent)性能相當或更好。
  2. 多平台支援
    • 可作為 MCP 伺服器 運行,與 Claude Desktop 免費搭配使用。
    • 支援 Gemini(需 Google Cloud API 金鑰,新用戶可獲 $300 贈金)。
  3. 技術創新
    • 使用 語言伺服器(language server) 而非 RAG 技術來分析程式碼,能更有效理解大型程式碼庫。
  4. 開源授權:以 GPL 許可證 釋出,原始碼託管於 GitHub(Oraios/Serena)。

總結:作者推廣一款開源、免費的程式碼分析工具,強調其技術優勢與易用性,並提供多種部署選項。

內容

We've been working like hell on this one: a fully capable Agent, as good or better that Windsurf's Cascade or Cursor's agent - but can be used for free.

It can run as an MCP server, so you can use it for free with Claude Desktop, and it can still fully understand a code base, even a very large one. We did this by using a language server instead of RAG to analyze code.

Can also run it on Gemini, but you'll need an API key for that. With a new google cloud account you'll get 300$ as a gift that you can use on API credi```.

Check it out, super easy to run, GPL license:

https://github.com/oraios/serena

討論

無討論內容


9. MCP client side automation??(claude desktop, cursor...etc)

這段文字的核心討論主題是:
「利用 Shopify-MCP 工具實現自動化,並透過 LLM(大型語言模型)驅動其後台運作,以取代現有 90% SaaS 服務的潛力」

具體重點包括:

  1. 工具介紹:作者開發了 shopify-mcp(可能指「多管道處理」或類似功能),用於與 Shopify API 互動。
  2. 未來潛力:強調該工具的關鍵價值在於「自動化」,並認為這是 SaaS(軟件即服務)存在的核心意義。
  3. 技術整合:提出結合 LLM(如 GPT 等模型)在後台驅動自動化流程,可大幅簡化現有 SaaS 服務的複雜性。
  4. 市場影響:主張此類自動化解決方案可能取代市場上 90% 的 SaaS 產品,因其能更高效地處理重複性任務。

隱含議題:對傳統 SaaS 商業模式的挑戰,以及 AI 驅動自動化對開發者工具的革新潛力。

內容

I've built shopify-mcp for interaction with shopify api https://github.com/GeLi2001/shopify-mcp

But imo the true power of mcp in the future is automation, which is why saas exis```, once automation is realized with llm utilizing mcp in the background, then there's no need of 90% of saas out there in market.

討論

評論 1:

This is awesome! We're building a mcp client designed to be easy to use, so that business users can succeed with them too.


10. MCP Server Pentest A security testing tool that enables automated vulnerability detection including XSS and SQL injection, along with comprehensive browser interaction capabilities for web application penetration testing.

根據提供的文章連結(來自 glama.ai),該文章的核心討論主題是關於 MCP(Minecraft Protocol)伺服器的滲透測試(Pentest)。以下是可能的重點內容總結:

  1. MCP 伺服器的安全性分析
    討論 Minecraft 伺服器(特別是基於 MCP 協議的版本)可能存在的安全漏洞,例如未授權訪問、協議缺陷或插件漏洞。

  2. 滲透測試方法
    可能涵蓋對 MCP 伺服器進行滲透測試的技術,包括端口掃描、漏洞掃描、權限提升等實用技巧。

  3. 常見攻擊手法
    例如 DDoS 攻擊、協議濫用(如假封包注入)、或利用已知的 CVE 漏洞(如 Log4j 等)。

  4. 防護建議
    提供加固 MCP 伺服器的措施,例如更新軟件、配置防火牆、限制權限等。

由於無法直接訪問連結內容(可能需註冊或權限),以上總結基於標題「MCP-Server-Pentest」和常見的伺服器安全測試主題推測。如需更精確的分析,建議提供具體文章內容或關鍵段落。

內容

連結: https://glama.ai/mcp/servers/@9olidity/MCP-Server-Pentest

討論

無討論內容


11. Masa Brings MCP to Bittensor

這篇文章的核心討論主題是:
「如何在 Masa 的 Subnet 42(Bittensor 生態中的實時數據子網)上開發創新的 MCP(Model Context Protocol)插件,以增強 AI 代理的能力」。

具體重點包括:

  1. Subnet 42 的定位:作為去中心化的實時數據層,專注於為 AI 應用提供動態數據管道與存儲(如時間序列和向量數據庫),替代傳統中心化 API。
  2. 目標任務:開發能直接賦能 Bittensor 生態中 AI 代理的 MCP 插件,強調「創新性」與「價值交付」。
  3. 競賽機制:提供獎金與展示機會,提案需在 2024 年 4 月 24 日前提交,優勝者將在 Endgame 會議上公佈。

整體圍繞「透過開發生態工具(MCP 插件)強化 Subnet 42 的實時數據應用,推動去中心化 AI 發展」這一核心目標。

內容

Objective: Build an innovative MCP (Model Context Protocol) plugin that can be featured in Masa's subnet 42. Your MCP plugin will deliver direct value by enhancing AI agent capabilities across the Bittensor ecosystem.

What is Subnet 42 Real-Time Data:

Masa Subnet 42, launched in August 2024, is our premiere real-time data layer for powering AI agen``` and applications. Real-time AI intelligence requires real-time data. Subnet 42 specializes in creating decentralized data pipelines and data storage (enterprise time series and vector store), providing an alternative to traditional centralized APIs.

SN42 Fac```heet: https://x.com/getmasafi/status/1890928750159593772

##Rewards Structure##

1st place: $2,500 2nd place: $1,250 3rd place: $750 4th place: $300 5th place: $200

  • Deadline & Presentation: Submit your proposals by April 24, 2024.

  • Winners Announced: April 25th, at the Endgame conference in Austin, Texas.

Participan will submit their proposals and code via Subnets 42 dedicated submission portal, with finalis invited to demo their solutions live during the event (virtual or in person)

Register: https://bittensorsummit.com/#hackaton

討論

無討論內容


12. v0.7.3 Update: Dive, An Open Source MCP Agent Desktop

這篇文章的核心討論主題是 Dive 桌面應用程式的功能介紹與版本更新(0.6.0 至 0.7.3),主要涵蓋以下重點:

  1. Dive 的定位與核心功能

    • 跨平臺(Windows/Linux)工具,支援所有具備「工具調用」(tool calls)能力的 LLM(大型語言模型)。
    • 提供即時工具調用嵌入、高效系統整合,簡化 MCP Server 安裝流程,旨在提升開發者的靈活性與效率。
  2. 0.6.0 至 0.7.3 版本更新內容

    • 多模型支援與切換
      • 支援多種主流 LLM 服務(如 OpenAI GPT-4、Claude、Gemini 等),並允許自訂模型。
      • 可切換不同 MCP Server 配置或使用多組 API 金鑰。
    • 使用者體驗與性能優化
      • 新增「編輯已發送訊息」、「重新生成 AI 回應」等功能。
      • 介面改進(如可折疊工具區塊、快捷鍵邏輯調整)、錯誤提示優化、背景運行與開機自啟等。
      • MCP Server 預設範例的程式碼格式簡化(CJS → ESM)。
  3. 額外資訊

    • 提供下載連結(GitHub Releases),並提及與同類工具(如 Open WebUI)的差異。

總結:文章聚焦於 Dive 作為開發者工具的技術特性與版本迭代,強調其對多模型整合的支援及操作體驗的持續優化。

內容

Dive is a desktop application for Windows and Linux that suppor``` all LLMs capable of making tool calls. It is currently the easiest way to install MCP Server. Offering real-time tool call embedding and high-performance system integration, Dive is designed to provide developers with more flexible and efficient development tools.

0.6.0 0.7.3 Update Summary

  1. Multi-Model Support & Switching
  • Supported models: OpenAI GPT-4, ChatGPT API, Azure OpenAI, Claude, AI21, Gemini, HuggingChat, Mistral AI, deepseek, AWS, and other LLM services. Custom models are also supported.

  • Multi-model Switching: Switch between multiple MCP Servers. You can use multiple se``` of keys or different configurations for the same LLM provider, and easily switch between them.

  1. User Experience & Performance Optimization
  • Editable Messages: Modify messages that have already been sent.

  • Regenerate Responses: Suppor``` regenerating AI responses.

  • Auto Updates: Now suppor``` automatic updates to the latest version.

  • Interface and Operation Enhancemen```: Collapsible tool_calls and tool_result sections; pressing ESC while the sidebar is open will prioritize closing the sidebar instead of interrupting AI responses.

  • API Key Configuration Improvemen: Displays error messages in red for incorrect inpu, and error messages disappear automatically when switching providers.

  • MCP Server Default Example Optimizations: The echo example has been updated from CJS format to ESM, reducing file size.

  • Background Operation and Auto-Start: The app can be minimized to the background and suppor``` auto-start on boot.

Try it out!

https://github.com/OpenAgentPlatform/Dive/releases It would be nice as a web app. But oke you got Open WebUI for it I guess.

討論

評論 1:

Dive is a desktop application for Windows and Linux that suppor``` all LLMs capable of making tool calls. It is currently the easiest way to install MCP Server. Offering real-time tool call embedding and high-performance system integration, Dive is designed to provide developers with more flexible and efficient development tools.

0.6.0 0.7.3 Update Summary

  1. Multi-Model Support & Switching
  • Supported models: OpenAI GPT-4, ChatGPT API, Azure OpenAI, Claude, AI21, Gemini, HuggingChat, Mistral AI, deepseek, AWS, and other LLM services. Custom models are also supported.
  • Multi-model Switching: Switch between multiple MCP Servers. You can use multiple se``` of keys or different configurations for the same LLM provider, and easily switch between them.
  1. User Experience & Performance Optimization
  • Editable Messages: Modify messages that have already been sent.
  • Regenerate Responses: Suppor``` regenerating AI responses.
  • Auto Updates: Now suppor``` automatic updates to the latest version.
  • Interface and Operation Enhancemen```: Collapsible tool_calls and tool_result sections; pressing ESC while the sidebar is open will prioritize closing the sidebar instead of interrupting AI responses.
  • API Key Configuration Improvemen: Displays error messages in red for incorrect inpu, and error messages disappear automatically when switching providers.
  • MCP Server Default Example Optimizations: The echo example has been updated from CJS format to ESM, reducing file size.
  • Background Operation and Auto-Start: The app can be minimized to the background and suppor``` auto-start on boot.

Try it out!

https://github.com/OpenAgentPlatform/Dive/releases

評論 2:

It would be nice as a web app. But oke you got Open WebUI for it I guess.


13. I dove into MCP and how it can benefit from orchestration frameworks!

這篇文章的核心討論主題是 Model Context Protocol (MCP) 及其在大型語言模型(LLMs)與工具協作中的角色。重點包括:

  1. MCP 的功能

    • 作為標準化通訊協定,使 LLMs 能與外部工具(如 API、數據庫等)無縫互動,類似《銀河便車指南》中的「巴別魚」(Babel Fish)的橋樑作用。
  2. 協同運作機制

    • MCP 專注於工具間的標準化溝通,而 Orchestration(協調層)則負責代理(agent)的內部邏輯,決定何時調用 MCP、處理數據或執行其他步驟。
  3. 應用價值

    • 結合 MCP 與協調層,可建構更複雜、能靈活使用工具的 AI 代理,擴展 LLMs 的實際應用能力。

附帶的部落格連結進一步探討此概念,並以「AI 巴別魚」比喻 MCP 的互通性價值。

內容

Spent some time writing aboutMCP (Model Context Protocol)and how it enables LLMs to talk to tools (like the Babel Fish in The Hitchhiker's Guide to the Galaxy).

Here's the synergy:

  • **MCP:**Handles thestandardized communicationwith any tool.

  • **Orchestration:**Manages the agent'sinternal plan/logic decidingwhento use MCP, process data, or take other steps.

Together, you can build more complex, tool-using agen```!

Attaching a link to the bloghere. Would love your though```.

討論

評論 1:

Also we just enabled MCP communication: aserverthatprovidesa tool via MCP, and aclient(within the Pocket Flow Framework) thatcallsthat tool using the MCP protocol:https://github.com/The-Pocket-World/Pocket-Flow-Framework


14. guMCP: open source, free, fully hosted MCP servers

這篇文章的核心討論主題是介紹一個名為 guMCP 的開源專案,該專案提供一系列 開源的 MCP(多通道通訊協議?或自訂協議)伺服器,支援多種常見平台(如 Gmail、Slack、QuickBooks 等)的整合。重點包括:

  1. 開源與託管選擇

    • 用戶可免費克隆 GitHub 儲存庫自行部署,或使用作者提供的免費託管服務(含身份驗證功能)。
  2. 持續擴充的整合清單

    • 目前支援多種工具(如 Slack、Google 服務、HubSpot 等),並預告每日新增 1-2 項整合。
  3. 社群回饋邀請

    • 作者鼓勵使用者試用並提供意見。

簡潔總結
「開源專案 guMCP 提供多平台整合的 MCP 伺服器,支援自架或免費託管,並持續擴展功能,尋求社群回饋。」

內容

Hey everyone!

Hosted version: gumloop.com/mcp

Open source project: https://github.com/gumloop/GuMCP

I put out an open source project called guMCP which is collection of fully open source MCP servers. We currently support Gmail, Slack, Shee```, Linear, Attio, Perplexity, Google cal, Google docs and we just added Quickbooks + Hubspot.

We'll be adding 1-2 new integrations every single day for the forseeable future. You can either clone the repo and host everything for free or use our hosted MCP servers which are totally free and also handle authentication for you.

Would love to hear what you guys think!

討論

評論 1:

No.


15. MCP Firebird A server implementing Anthropic's Model Context Protocol (MCP) for Firebird SQL databases, enabling Claude and other LLMs to securely access, analyze, and manipulate data in Firebird databases through natural language.

根據提供的連結(https://glama.ai/mcp/servers/@PuroDelphi/mcpFirebird),目前無法直接存取內容(可能需特定權限或平臺限制)。若您能提供文章的具體文本或更詳細的描述(例如主題、關鍵詞、作者觀點等),我可以協助分析並總結其核心討論主題。

若文章與「Firebird」相關,可能涉及以下常見方向:

  1. 技術層面:Firebird 數據庫系統的應用、效能優化或開源生態討論。
  2. 社群專案:某個以 Firebird 為基礎的開發專案或伺服器管理工具(如「MCP」可能指模組化控制平臺)。
  3. 開發者見解:對 Firebird 的功能評測、未來發展或與其他技術的比較。

建議提供更多線索(如摘要或關鍵段落),以便給出精準總結。

內容

連結: https://glama.ai/mcp/servers/@PuroDelphi/mcpFirebird

討論

無討論內容


16. MCP server "store" / hosting server

這篇文章的核心討論主題是關於 集中管理和簡化 MCP(Mod Coder Pack)伺服器的部署與運行方式。具體要點包括:

  1. 現有問題的批評
    作者指出當前 MCP 伺服器需在本地端用戶機器上建置和運行,這種方式顯得笨拙,尤其是當需要將服務提供給其他實際運行的伺服器(如 Home Assistant、Open WebUI 等)時。

  2. 提議的解決方案

    • 集中化伺服器:建議開發一個中央伺服器來托管這些 MCP 伺服器,避免本地端運行的麻煩。
    • 應用商店式管理:透過「商店」(store)頁面提供一鍵安裝可用 MCP 伺服器的功能,簡化部署流程。
    • 輕量化本地部署選項:例如提供 Docker 容器搭配簡單 GUI,方便用戶在本地環境中運行(加分項)。
  3. 開放提問與需求驗證
    作者詢問是否有類似項目正在進行,或自己是否忽略了現有解決方案,並反思自己的構想是否過於簡化實際技術挑戰。

總結:文章聚焦於「如何改善 MCP 伺服器的部署與管理體驗」,核心訴求是透過集中化、商店化及容器化來提升便利性,同時探討技術可行性與現有資源。

內容

Is anyone working on something like this and / or is something available and I've missed it?

From what I can gather MCP Servers are built and hosted locally on your end user machine. Seems like a great opportunity to have a central server to host these "servers" and to have a "store" type page where you could click to install available MCP servers.

Maybe I'm over simplifying, but it feels weird to have to run MCP servers on my local machine to serve them to my actual servers hosting things like Home Assistant, Open WebUI, etc.

Bonus poin``` if this thing can be hosted locally with a simple GUI in a Docker container or something.

討論

評論 1:

http://glama.ai/mcp/servers

Just click Install and your server will be deployed to a private VPS.

Here is a demo showing how to use it https://app.arcade.software/flows/PU```A87pd73P3YV2oBJV/view

評論 2:

mkinf.io
you can run hosted mcp and integrate them into your codebase in a few lines of code

評論 3:

There is also smithery - though they focus on integration with pre existing MCP clien / hos like Cursor

https://smithery.ai/


17. Can People Here Explain to Me the Pros and Cons of MCP vs Workflow?

這篇文章的核心討論主題是:「MCP伺服器(可能指現代化或新興的自動化平台)對傳統工作流程工具(如n8n等)的影響與意義」,並要求以簡單易懂的方式(ELI5,即「向5歲小孩解釋」)說明。

簡要總結:

  1. MCP伺服器的熱門現象:探討新興技術(如MCP)的興起為何受到關注。
  2. 對傳統工具的衝擊:分析這類新技術是否會取代或改變現有工作流程工具(例如n8n這類低程式碼/自動化平台)的角色。
  3. ELI5解釋需求:希望用非技術語言說明兩者的差異、優勢,以及傳統工具是否仍具價值。

可能的延伸問題:

  • MCP伺服器是什麼?(需釐清具體指哪種技術,例如雲端協調平台、微服務控制平台等。)
  • 傳統工具(如n8n)的定位是否會被顛覆?
  • 新舊技術如何共存或整合?

(註:若「MCP」有特定定義,需進一步上下文確認,此處假設為某種新興自動化或協作平台。)

內容

Quite hyped by MCP servers, but what does it mean to the "traditional" workflow Agen``` (like n8n etc.)? Please ELI5, thx!

討論

評論 1:

In my experience, most real-world use-cases of automation are not Agents.

It's usually a well-specified process: take this info from tool A, run a prompt, and insert the output into tool B.

This does not need an MCP or any agent. It's just a workflow - with or without an AI step. And this is what you'd usually use n8n or Make for.

Indeed, there is a big promise in agentic-autonomous AI behavior, but there are many difficulties too. And I wouldn't be surprised if Agen``` will continue to have a narrower use compared to workflow automation for the foreseeable future.

Things like reporting and online research are great uses for agentic AI; but for anything where an agent has to change things in i``` environment runs into the problems of mistakes and responsibility.

So I think for these cases "traditional" workflows will remain the go-to way for a long time.

評論 2:

n8n tells the locksmith which doors to fix and when. MCP gives the locksmith the tools, memory, and rules so the agent can figure out how to fix them. One controls the steps, the other enables autonomy. Different purposes, not competitors.

評論 3:

There are a couple concep``` you should be aware of; if you don't like this explanation, I recommend asking your favorite LLM for more info:

- MCP is a protocol; protocols are there to define how communication is done. Mcp "Servers" are basically just scrip that are written to interpret functions and purpose of a given application in a way that describes what the server is for, and the tools that it has access to use so an LLM can run said commands. \- Apps like n8n, Zapier, Make, etc., are workflow automation platforms; this concept has existed before LLMs, and aren't natively related to AI, but have for the most part adopted to include LLM and agentic functionality. N8n as an example can be made to be an MCP "Client" but it's not necessarily n8n ielf doing this - they have AI Agent nodes that can be built to leverage various models that can run tools (gpt4, claude, gemini, etc.) The AI agent node access a model node and an MCP Client tool node which can be combined to make an MCP client.

n8n also has plenty of other tool nodes that it can use such as gmail, outlook, any many many others. But usually you have to set up a single node for each command you want, you have to describe what the agent has access to, and if the commands or applications don't have their own nodes, you may have to build your own node or a whole other workflow with each command defined using http request nodes instead (interacting with the API). Rather than going through all of that, in n8n you can have one node to list the available tools, and another to execute. The list of servers is all neatly listed in Json, and you just add more servers if you want to add more functionality to the agent.

The biggest confusion many have isn't between MCP and automation platforms, but between MCP and agentic frameworks such as Langchain, Pydantic AI, etc. That's a whole other story.

評論 4:

MCP is a tool protocol for agen```. You can even make an MCP workflow if you want to. Go to the repo and research the MCP servers available then decide if you like some pf those and try ans use them. Having someone explaining teoretical stuff for you is lame. Go and try it out dude.


18. Is it possible to build custom MCP client applications yet?

这篇文章的核心讨论主题是:开发者是否能够基于Anthropic的Model Context Protocol (MCP)从头开始构建自定义客户端应用,以及当前MCP生态系统对独立开发者的支持情况。

具体探讨的问题包括:

  1. MCP目前是否仅限于官方应用(如Claude Desktop、Cursor)的集成,还是开放给开发者构建自定义客户端?
  2. 是否有开发者尝试过构建自定义MCP客户端,或了解相关技术现状?
  3. 是否存在针对独立开发者的MCP文档、资源或示例代码(可能未被广泛发现)?

作者希望获得社区经验或官方资源的分享,以探索MCP在自定义开发中的可行性。

內容

Hey everyone!

I've been diving into Anthropic's Model Context Protocol (MCP) and I'm really excited about i``` potential. I've noticed that most examples and tutorials focus on using MCP with existing applications like Claude Desktop and Cursor.

What I'm wondering is: can developers currently build their own custom MCP client applications from scratch? Or is MCP integration currently limited to these established apps?

I'd love to hear from anyone who has attempted to build a custom MCP client or has insigh into the current state of the MCP ecosystem for independent developers. Are there any resources, documentation, or examples for building custom clien that I might have missed?

Thanks in advance for sharing your knowledge!

討論

評論 1:

Yes. Typescript SDK (clien``` and servers): https://github.com/modelcontextprotocol/typescript-sdk

This page has a bunch of apps that have built clien: `https`://modelcontextprotocol.io/clien

At the bottom there are links to the SDKs to build your own.

評論 2:

I've been tracking every client implementation I can find by putting it here: [https://www.pulsemcp.com/clien](`https`://www.pulsemcp.com/clien) (195 and counting)

Many of them are just CLI tools, but 30+ are solid, working clien``` that can be pretty useful to end users.

Some highligh```:

- Fast Agent: open source CLI client capable of spinning up agen``` with natural language commands. It's the only client I've seen that checks all 5 boxes of the MCP features supported matrix.
- Sage: macOS / iOS only, but a great example of a client using MCP on mobile
- Highlight: use MCP anywhere on your desktop computer

評論 3:

client QuickStart docs

評論 4:

Yes you can check this out its mcp client . https://github.com/Abiorh001/mcp_omni_connect


19. MCP Newsletter

這段文字的核心討論主題是:
作者推出了一個名為「MCP Bi```」的週刊通訊(newsletter),旨在彙整與「MCP」相關的最新消息、文章和專案進展,並強調該專案發展迅速。

具體要點包括:

  1. 新推出的週刊:首期「MCP Bi```」已發布,未來將以每週更新的形式提供內容。
  2. 內容範圍:聚焦於「MCP」相關的新聞、文章及專案動態。
  3. 專案進展:提及「MCP」目前發展迅速,暗示其活躍度或重要性。

(註:原文中的連結因格式問題無法直接點擊,但推測「MCP」可能是某個技術、區塊鏈或其他領域的專案名稱。)

內容

I recently published the first [MCP Bi](`http`://mcpbi.substack.com) post. MCP Bi``` is a weekly newsletter that compiles all the latest news, articles and project updates. MCP is progressing fast!

討論

無討論內容


20. time-mcp Giving LLMs Time Awareness Capabilities. Empower your LLMs with time awareness capabilities. Access current time, convert between timezones, and get timestamps effortlessly. Enhance your applications with precise time-related functionalities.

由於我無法直接訪問外部連結或特定網站(如 glama.ai),因此無法直接閱讀或總結該文章的具體內容。不過,我可以提供一些通用的方法,幫助你自行分析文章的核心主題:


如何總結文章的核心討論主題?

  1. 標題與副標題

    • 文章的標題通常直接反映核心主題(例如「Time-MCP」可能暗示與時間管理、多雲端平台或技術相關的討論)。
    • 副標題或引言可能進一步縮小範圍。
  2. 關鍵段落

    • 開頭和結尾段落通常包含作者的主要論點或總結。
    • 尋找反覆出現的關鍵詞(如「時間效率」「雲端架構」「MCP 技術」等)。
  3. 結構與小標題

    • 文章是否分為幾個部分?每個小標題可能對應一個子主題(例如技術原理、應用場景、案例分析等)。
  4. 作者觀點與結論

    • 核心主題往往與作者試圖解決的問題或提出的主張相關(例如「如何優化時間驅動的雲端資源分配」)。

如果涉及技術主題(如 MCP)

  • MCP 可能是 Multi-Cloud Platform(多雲端平台) 或某種技術縮寫,文章可能討論:
    • 跨雲端服務的時間同步或資源管理。
    • 時間敏感型應用的架構設計。
    • 相關工具或案例研究。

建議行動

  1. 直接閱讀文章,標記關鍵句和重複概念。
  2. 檢查是否有摘要(Abstract)或結論部分。
  3. 若提供文章中的具體段落或摘錄,我可協助進一步分析。

希望這些方向能幫助你歸納核心主題!

內容

連結: https://glama.ai/mcp/servers/@yokingma/time-mcp

討論

無討論內容


21. I just made a remote storage MCP server

這篇文章的核心討論主題是關於在「Glama」平台上實現「工作區文件夾」(workspace folder)在多個「MCP」(可能是某種設備或平台的縮寫)之間同步的功能,以及這項技術挑戰的複雜性。作者提到這是一個「不太容易解決的問題」(not so easy problem),暗示了同步技術在跨設備或跨平台應用中的難度。

內容

Pretty cool! one of the things that I am working on Glama is the ability to sync your workspace folder between every MCP. Definitely a not so easy problem.

討論

評論 1:

Pretty cool! one of the things that I am working on Glama is the ability to sync your workspace folder between every MCP. Definitely a not so easy problem.


22. Does having hosted MCP servers sound useful to you ? or you would just use STDIO ?

文章的核心討論主題是:

「遠端託管的 MCP(可能指 Minecraft Protocol 或類似技術)伺服器對終端用戶的實用性,以及與本地 MCP 伺服器的比較。」

具體探討的問題包括:

  1. 遠端託管的 MCP 伺服器是否能為終端用戶提供便利(例如透過單一連結連接 IDE 和代碼代理工具)?
  2. 這種遠端方案是否值得採用,還是直接使用本地 MCP 伺服器即可滿足需求?

關鍵在於比較「遠端託管」與「本地運行」的優缺點,並討論其對開發者或終端用戶的實際價值。

內容

There are a lot of startups around building hosted remote MCP servers, is it useful for end consumers to be able to connect to IDEs and code agen``` via a single link ?

Or you would just use local MCP server and call it a day ?

討論

評論 1:

I am keeping an open mind about which direction the market will head, but my gut feeling is telling me that all of these servers will be hosted. A few reasons that come to mind:

  1. Hosted servers are easier to isolate (security)
  2. Hosted can persist across different envs (like your phone and your computer)
  3. Hosted servers are easier to deploy (since the platform handles). here is an example of how the hosting process looks on Glama

The biggest problems with remote servers at the moment are:

  1. Lack of shared FS
  2. Lack of ways to interact with local software
  3. Stability

All three problems are solvable.

Once these issues are addressed, I suspect MCP to become mainstream, i.e. as popular as app store.

評論 2:

Id say they are useful when you are building a product like a SaaS where you are not the final user. But I believe that in the end, wherever there is a REST API, there will probably be an MCP API as well.


23. Good MCP client for automations/dashboards?

这篇文章的核心討論主題是:

如何在企業內部自動化任務中,尋找更快速、輕量化的解決方案,以替代耗時的手動編寫程式(如 `clien```),並特別探討是否可使用現成工具(如 Zapier 或 Retool)來簡化工作流程。

具體重點包括:

  1. 當前痛點:手動編寫程式(如 `clien```)耗時,尤其對輕量級的儀表板(dashboard)或日常自動化需求(如從 Postgres 和 Posthog 提取數據並發送到 Slack)效率不足。
  2. 需求場景:需要更快速的工具來處理重複性、低複雜度的自動化任務(如每日數據彙整與通知)。
  3. 潛在解決方案:探討現成工具(如 Zapier 或 Retool)是否能提供開箱即用(out-of-the-box)的快速實現,以節省開發時間。

整體聚焦於「效率優化」與「工具選擇」的權衡。

內容

We've been writing some internal automations for our company by hand rolling clien which is well and good and all, but I have probably 4-5 things that are more lightweight "dashboard"-y use cases that I'd like to get done. The issue is that writing clien is pretty time consuming.

One of my use cases, for example, is pulling a set of data from Postgres and Posthog to be sent to a daily updates slack channel each morning.

Curious if anyone's tried using something like Zapier or Retool to do this more quickly out of the box.

討論

評論 1:

Might not totally be related but im building an ai chat ui that can interact with mcp servers you can integrate any kind of sse based server in and use it that way. Currently trying it with zapier mcp.

If this might be of help feel free to tell me :)

評論 2:

so you are pulling data from Postgres and Posthog ... use cursor or claude desktop ?

What are your issues with these ?

評論 3:

Hey! Were building a really easy to use MCP client that enables automated playbooks to run on schedule too.

What kind of features do you need? Would love to see if its a fit


24. Hype-less opinion of MCP

這篇文章的核心討論主題是對當前流行的AI技術(特別是MCP)的過度炒作(hype)提出質疑,並呼籲以更理性、專業的角度(如程式設計師或電腦科學家的觀點)來評估新技術,而非盲目跟隨非專業人士(如「AI狂熱者」、「腳本小子」或「氛圍程式設計師」)的熱潮。作者強調需要批判性思考,避免被短期的技術炒作所誤導。

內容

I know many of you are hyped by MCP, but I want an actual programmer/computer scientist hype-less opinion on this thing, not just script kiddies/vibe coders. Because there's always a new way to interact with AI models that are hyped by AI bros

討論

評論 1:

Engineer with 10+ YoE; I'll answer with a comparison to a different protocol: Language Server Protocol (LSP).

The Language Server Protocol was released in 2016; before that, development IDEs used to need to implement specific tools for each and every programming language it wanted to support. This meant that a developer's favorite programming language (Javascript, Python, Java, or perhaps a more niche language) may work very poorly in VSCode, but works amazing in Sublime Text - and if you wanted to use a more niche editor (e.g. VIM in the terminal), then at best you would be stuck with some janky open-source plugin for your language, and likely wouldn't have any tool support.

Then came LSP: Microsoft standardized a protocol of Editor features that Programming Languages could support (e.g. syntax highlighting, auto-complete, lint errors, etc). This meant very important improvemen for both the LSP Clien (IDEs) and the LSP Servers (Programming Language tools):

- Programming Languages (the LSP servers): PLs and their ecosystems no longer needed to implement features against a given editor; so instead of Typescript needing a "Typescript-Sublime-Server" and "Typescript-VSCode-Server", there's just a "Typescript-LSP-Server".
- IDEs (the LSP clien) no longer needed to "support" a given programming language; as long as the IDE implemented an LSP client, any LSP server could connect to it. So VIM doesn't care what language you're using, i features work the same across any LSP-supported language

No LSP vs LSP diagram: [https://code.visualstudio.com/asse/`api`/language-extensions/language-server-extension-guide/lsp-languages-editors.png](`https`://code.visualstudio.com/asse/api/language-extensions/language-server-extension-guide/lsp-languages-editors.png)

Fast forward to today, LSP has absolutely transformed the Development tooling world: it allows even the most-niche Programming Languages to have INCREDIBLE developer experiences in your favorite IDE, since they don't need to directly partner with / depend on the IDE clien``` like Cursor or VSCode, and can instead simply focus on creating an LSP server.

On the client-side of things, end-users (developers) no longer need to pick an IDE based on whether or not the IDE suppor their favorite language, and they can instead pick an IDE based on i actual editor capabilities (e.g. using Cursor for i``` latest AI capabilities).

Of course, we're still in the middle of the LSP transformation, and some languages/companies have a vested interest in not using a standardized protocol (e.g. JetBrains IDEs, Apple's XCode, etc) - however, LSP is increasingly becoming the defacto way to connect an editor to a language's tooling.

-- MCP in 2025 --

MCP is very similar to LSP; in fact I wouldn't be surprised if it's APIs were the main source of inspiration for MCP.

In the above comparison, if you replace "Programming Languages" with 3rd Party APIs (e.g. Stripe, Supabase, etc), and you replace "IDEs" with "AI Chat Clien```", then you get MCP .

MCP, if successful, would remove the need for a company like Supabase to support integrations with Cursor, Claude, OpenAI, LangChain, Vercel AI Sdk, etc - instead, they simply have a Supabase MCP Server, which can be used by ANY of those MCP clien``` in the future. This will allow even the smallest startups to enable robust AI solutions for their users to use in any AI client, with minimal setup; furthermore, MCP will eliminate the need for any MCP Client to create their own marketplace of integrations (might be the end for the OpenAI GPT Marketplace?), which means end users will have a much easier time using their tools on any AI platform.

IMO, MCP seems like it's in the right hands with Anthropic - I believe it has a high chance of becoming the defacto solution for integrating third party tools and APIs with LLMs.

EDIT: Some good info on how LSP solved the same problem:
- https://code.visualstudio.com/api/language-extensions/language-server-extension-guide#why-language-server

評論 2:

Its a protocol. If you spend any time as a career engineer youll encounter many of these.

Its just a specification. Nothing more. Nothing less.

Its a standardized way for tool definitions and communication.

It doesnt allow you to do anything you couldnt before.

It just STANDARDIZES the way we do it so we can more easily share and implement tooling.

評論 3:

I developed with MCP since November, before thanksgiving, months before anyone knew what the hell MCP was.

MCP is like the internet, or AI generally. Its incredible if used correctly, and there are things you can do that would otherwise take hours on automation and connection setup.

It can also be useless garbage. Read the docs. Understand whats happening under the hood. Understand the fundamental requiremen``` and internals of a good server/client.

If you do that youre doing more than 99% of users, and depending on your use case, will either have a good time, great time, or game changing experience time. If you dont do that, who knows

評論 4:

Someone answered in another thread. It's a protocol.

評論 5:

It's a protocol, not the best one, but that does not matter.

What matters is that enables one to connect _any_ external tool to _any_ LLM model with MCP support without having to modify the LLM runtime. This is very powerful. This means if you have a tool you are using manually, you can have it driven by llm without asking anyone's permission or waiting for 3rd party support.

As just one example, I made lldb-mcp last week that allowed Claude to debug my programs for me using LLDB, completely autonomously. Tracking down buffer overflows and stuff. Felt like magic.

Without MCP I would have to wait for Claude to support this.


25. Looking for advice: Deploying custom AI agen with MCP locally \{#25-looking-for-advice-deploying-custom-ai-agen-}

这篇文章的核心討論主題是:「如何部署基於MCP(可能是某種多代理協作平台)的AI代理以實現業務流程自動化(尤其是處理Excel文件)」,並尋求相關的部署策略與工具建議。具體聚焦以下方向:

  1. 部署方式選擇

    • 本地部署(On-premise)的最佳實踐與技術方案(如MCP代理的本地運行環境配置)。
    • 是否有可行的雲端/遠端部署選項,以及如何與本地資源(如Excel文件)協作。
  2. 工具與框架支援

    • 現成可自訂的工具或框架(例如開源MCP平台、AI代理開發套件)以簡化部署流程。
  3. 實務經驗分享

    • 實際案例中的成功方法與挑戰(如權限管理、系統整合、效能問題等)。

整體而言,作者希望透過社群經驗,解決AI代理在企業環境中落地應用的技術障礙,尤其是部署階段的可行性與效率問題。

內容

I'm working on a business process automation project using AI agen``` with a MCPs where the agent would need to interact with Excel files.

I'm currently exploring options for deploymen at my clien and looking for advice from those with experience.

Questions:

  1. What's the best way to deploy an MCP-based AI agent locally?

  2. Are there existing customizable tools or frameworks we can use to simplify deployment?

  3. Is local deployment the only option for these types of MCP agen```, or are there cloud/remote options that would still work with local resources?

Any insigh``` from those who've implemented similar solutions would be greatly appreciated. I'm particularly interested in hearing about what deployment approaches worked well in practice and any challenges you encountered.

Thanks in advance!

討論

評論 1:

Answers to your questions,

  1. Using react-native like framework, and then using langchain / smolagen / toolrouter to build agen
  2. Yes, the same that I mentioned in #1
  3. Not really, there are a lot of great options around getting powerful MCP Servers remotely, some of the best include smithery / composio / toolrouter

If you provide more details on what you want to build, I can help more.


總體討論重點

以下是25篇討論重點的條列式總結,附上逐條細節與對應文章錨點連結:


1. MCPC協議擴展 1

  • 核心:擴展MCP協議實現雙向通信。
  • 細節
    • 向後兼容現有MCP,僅在雙方支援時啟用新功能。
    • 目前僅支援TextContent,未來擴展至圖片等格式。
    • 需搭配支援MCPC的框架使用(提供Python實作參考)。

2. YouTube轉錄工具整合問題 2

  • 核心:解決跨平台轉錄內容手動複製的低效問題。
  • 細節
    • 批評現有流程需切換平台(轉錄網站+聊天機器人)。
    • 提出對自動化整合的需求。

3. Claude桌面整合Lara MCP 3

  • 核心:強化翻譯功能的上下文感知能力。
  • 細節
    • Lara MCP支援專業術語與文化差異處理。
    • 提供Docker/NPX配置步驟與程式碼範例。
    • 預告雲端服務RichContext.ai。

4. MCP Router發布 4

  • 核心:集中化管理MCP伺服器的工具。
  • 細節
    • 功能:一鍵安裝、日誌分析、令牌認證。
    • 推廣免費下載與社群反饋(透過Twitter/X)。

5. 企業MCP授權問題 5

  • 核心:企業環境中MCP伺服器的治理挑戰。
  • 細節
    • 需動態服務發現與統一API網關。
    • 權限控制(如限制客戶端可存取工具清單)。

6. HubSpot MCP整合(推測) 6

  • 核心:HubSpot CRM與MCP的數據管理整合。
  • 細節
    • 可能涉及自動化行銷或客戶數據同步。
    • Shinzo Labs提供的解決方案。

7. Claude多MCP伺服器存取限制 7

  • 核心:Claude桌面應用不支援同時操作多MCP實例。
  • 細節
    • 使用者需解決MCP-X與MCP-Y的共存問題。

8. 開源AI編程代理 8

  • 核心:免費且高效的程式碼分析工具。
  • 細節
    • 支援MCP伺服器與Claude/Gemini整合。
    • 使用語言伺服器技術分析大型程式碼庫(GPL開源)。

9. Shopify-MCP自動化潛力 9

  • 核心:LLM驅動自動化取代90% SaaS服務。
  • 細節
    • 強調Shopify API整合與流程簡化。

10. MCP伺服器滲透測試(推測) 10

  • 核心:Minecraft協議伺服器的安全漏洞檢測。
  • 細節
    • 可能涵蓋DDoS防護與Log4j漏洞修復。

11. Masa的Bittensor插件開發 11

  • 核心:去中心化AI代理的實時數據插件。
  • 細節
    • Subnet 42專注時間序列數據,提供競賽獎金。

12. Dive桌面應用更新 12

  • 核心:跨平台LLM工具調用整合。
  • 細節
    • 支援多模型切換(GPT-4/Claude/Gemini)。
    • 新增訊息編輯與介面優化。

13. MCP與協調框架協作 [13](#13-i-dove-into