跳至主要内容

2025-04-01-top

  • 精選方式: TOP
  • 時間範圍: DAY

討論重點

以下是根據提供的28篇文章摘要,以條列方式整理的討論重點與逐條細節,並附上對應的文章錨點連結:


1. Google MCP 改進呼籲 1

  • 重點:要求Google改善Workspace應用的MCP支援。
  • 細節
    • 用戶呼籲在Google Issue Tracker上標註問題(#401270828)。
    • 批評Google Maps的MCP實作問題(REST API後端設計不良)。
    • 期望未來MCP開發需提升品質。

2. MCP Agent 工具開發 2

  • 重點:開源工具「MCP Agent」自動化搜尋文件內容。
  • 細節
    • 功能:自動抓取 llms.txt 文件,支援多網域與預設中心。
    • 應用:整合於Cursor編輯器,簡化開發者文件存取流程。
    • 設計理念:自然語言觸發,免除手動管理。

3. 對AI炒作(MCP)的批判 3

  • 重點:呼籲理性評估AI技術(如MCP)。
  • 細節
    • 批評非專業人士(如「AI狂熱者」)過度宣傳。
    • 強調需依賴專業開發者或科學家的分析。

4. Jupyter Notebook MCP 整合 4

  • 重點:Claude AI透過MCP控制Jupyter Notebook。
  • 細節
    • 功能:自然語言操作儲存格、多語言代碼執行。
    • 案例:自動生成教學內容與統計分析。
    • 警示:實驗性工具需注意安全性。

5. Puppeteer MCP 教學(影片) 5

  • 重點:推測為瀏覽器自動化教學。
  • 細節:需用戶提供影片細節以進一步總結。

6. Dive 桌面應用更新 6

  • 重點:開源工具Dive支援多模型管理。
  • 細節
    • 新增功能:訊息編輯、回應重新生成、API金鑰驗證優化。
    • 目標:提升LLM開發效率。

7. WhatsApp MCP 協定開發 7

  • 重點:TypeScript實作WhatsApp多裝置登入。
  • 細節
    • 逆向工程WhatsApp通訊協定。
    • 潛在應用:聊天機器人、第三方客戶端。

8. D語言MCP伺服器函式庫 8

  • 重點:推測為遊戲模組開發工具。
  • 細節:需查閱GitHub倉庫確認具體功能。

9. Claude 隱私與技術問題 9

  • 重點:隱私保護與MCP伺服器連接錯誤。
  • 細節
    • 詢問Claude如何保障數據安全。
    • 技術問題:Node.js環境下伺服器斷連。

10. MCP 新手入門指南請求 10

  • 重點:尋求MCP設置與整合建議。
  • 細節
    • 關注兼容性、常見陷阱與資源分享。

11. OpenWebUI 更新與MCP橋接 11

  • 重點:強化多模型與傳統API整合。
  • 細節
    • v0.6.0新增MCP伺服器支援,降低AI後端串接門檻。

12. Rich Context AI 知識管理 12

  • 重點:解決資訊碎片化問題。
  • 細節
    • 自動整合多平台資料,強化情境脈絡。

13. 多租戶雲端的MCP架構討論 [13](#13-help-me-understand-mcp-in-a-multi-tenant-cloud-

文章核心重點

以下是每篇文章的一句話摘要(條列式輸出):

  1. Google is looking into MCP! can we get Sundar do AMA in /r/mcp?
    呼籲Google改善Workspace應用的MCP支援,並批評Google Maps的MCP實作問題,同時鼓勵用戶在Issue Tracker上反饋。

  2. MCP that returns the docs
    介紹一款能自動搜尋並返回llms.txt文件內容的開源工具「MCP Agent」,簡化開發者文件存取流程。

  3. Hype-less opinion of MCP
    質疑AI技術(如MCP)的過度炒作,呼籲以專業程式設計師的理性觀點評估技術實用性。

  4. Jupyter Notebook MCP: work as a professional data analyst
    透過MCP整合Claude AI與Jupyter Notebook,實現自然語言控制筆記本操作及多語言代碼執行。

  5. Puppeteer (Browser control) MCP tutorial
    (無法直接總結,需提供影片細節或關鍵詞。)

  6. v0.7.3 Update: Dive, An Open Source MCP Agent Desktop
    開源桌面應用Dive更新,強化多模型切換、使用者體驗及API金鑰管理功能。

  7. MCP server of whatsapp using nodejs
    開源專案whatsapp-mcp-ts透過TypeScript實作WhatsApp多裝置登入的客戶端協定,支援第三方擴充。

  8. MCP server library for D language
    (需提供GitHub倉庫細節,推測可能與Minecraft模組開發或數據處理相關。)

  9. Marketplace for Claude
    討論MCP伺服器連接錯誤的技術問題,並提問系統如何保障用戶隱私數據安全。

  10. New to MCP—Tips & Things I Should Know Before Diving In?
    尋求MCP伺服器設置與整合的實用建議,強調避免常見陷阱及優化工作流程。

  11. Open WebUI new release; OpenAPI support and MCP bridge
    OpenWebUI v0.6.0更新,新增OpenAPI支援並整合MCP伺服器以強化多模型管理能力。

  12. Introducing Rich Context AI: Knowledge Management Reimagined for the AI Era
    提倡「Rich Context AI」解決資訊碎片化問題,透過自動化整合跨平台知識並保留情境脈絡。

  13. Help me understand MCP in a multi-tenant cloud application
    探討MCP在多租戶雲端架構中的角色混淆問題,釐清客戶端定義與混合通訊模式的合理性。

  14. Advantages of MCP
    強調MCP的優勢在於工具整合、標準化參數結構,以及LLM自動調用工具的潛力。

  15. Anyone that hosts MCP servers as a service or knows someone who does?
    尋求能提供MCP伺服器託管服務的聯繫人或相關資源。

  16. Is MCP inspector enough?
    評估MCP Inspector的功能限制,提議開發更全面的桌面應用以改善多伺服器管理體驗。

  17. Brave search API T&C violation???
    質疑開源專案「Brave Search MCP Server」是否違反Brave Search API的使用條款。

  18. Figma MCP tutorial
    (需提供影片內容細節,無法直接總結。)

  19. How to start MCP?
    探討學習MCP技術以實現跨應用整合的具體路徑與實作方法。

  20. MCP for Shopify Api
    開源工具Shopify-MCP實現商品資料多渠道同步,並整合Claude AI優化推送策略。

  21. Why sometimes work and sometimes don't
    反映MacOS上Claude Desktop載入MCP工具(如Brave Search、FileSystem)的不穩定問題。

  22. Using MCP for RAG workflow
    提議透過MCP爬蟲與向量數據庫自動化抓取專案文件,優化RAG工作流的上下文提取效率。

  23. Revit MCP – Allows AI to interact with Autodesk Revit via the MCP protocol
    Revit-MCP工具透過MCP協定讓AI讀取專案數據並自動化建模任務(如修改、刪除元素)。

  24. PagerDuty MCP Server – A server that exposes PagerDuty API functionality to LLMs
    PagerDuty MCP伺服器將事故

目錄


1. Google is looking into MCP! can we get Sundar do AMA in /r/mcp?

這篇文章的核心討論主題是:

呼籲Google改進其MCP(可能指「Managed Client Platform」或類似技術)伺服器對Workspace應用(如Gmail、Drive、Sheets等)的支援,並批評當前Google Maps的MCP實現在REST API後端存在問題。

具體要點包括:

  1. 請求用戶支持:鼓勵讀者在Google Issue Tracker上對相關問題(#401270828)給予星標(⭐)和評論,以提高關注度。
  2. 批評現狀:指出Google Maps的MCP目前功能不佳(「busted」),且隱藏在REST API之後,導致體驗不理想。
  3. 未來期望:強調若Google決定投入MCP開發,其品質必須超越現有不足(「has to be better than that」)。

隱含議題可能是對Google內部技術整合或API設計的質疑,並希望Workspace相關服務能獲得更高優先級的改善。

內容

For a Google provided MCP server for Workspace (Gmail, Drive, Sheets, Calendar, Sheets, Meet, etc), star ⭐ and comment on this issue: https://issuetracker.google.com/401270828! The google maps MCP is behind their REST APIs and busted .. if they go in on MCP it has to be better than that

討論

評論 1:

For a Google provided MCP server for Workspace (Gmail, Drive, Sheets, Calendar, Sheets, Meet, etc), star ⭐ and comment on this issue: https://issuetracker.google.com/401270828!

評論 2:

The google maps MCP is behind their REST APIs and busted .. if they go in on MCP it has to be better than that


2. MCP that returns the docs

這篇文章的核心討論主題是作者成功開發了一個名為「MCP Agent」的測試版工具,其主要功能是自動化搜尋並提供 llms.txt 文件內容。重點包括:

  1. 工具功能

    • 自動在指定網域中搜尋 llms.txt 文件。
    • 若本地找不到文件,則轉向預設的 llmtxt.dev 中心獲取。
    • 直接返回文件內容,無需手動記憶或輸入文件路徑。
  2. 應用場景

    • 支援在 Cursor 等程式碼編輯器中使用(尚未全面測試)。
    • 開源且可公開存取,但文中未提供具體連結。
  3. 用戶體驗改進

    • 免除手動管理 llms.txt 文件的繁瑣步驟,透過自然語言(如向 LLM 提問)即可取得文件內容,體現「讓工具適應使用者」的設計理念。
  4. 作者情緒與反饋

    • 以興奮語氣強調工具的實用性(如「MUCH WANTED」),並暗示可能帶有幽默或挑逗的互動設計(如「teasing us or whaat?」)。

總結:文章聚焦於介紹一個能簡化文件存取流程的自動化工具,並突出其便利性與開發者的熱情。

內容

I finally created the MCP I wanted—a beta version!

No need to add the llms.txt file in docs anymore; just ask this MCP Agent for it.

What does it do?

- Searches for llms.txt files on the specified domain

- Falls back to the llmtxt\.dev hub if no local file is found

- Returns the documentation content

Most importantly, it works in cursor and probably (I haven't tested yet) in other code editors. Awesome! Link? Open source? Yes, it returns the llms.txt file, but you don’t need to remember the path for each domain, you let llm to ask for it teasing us or whaat? OH MY GOSH

MUCH WANTED

討論

評論 1:

I finally created the MCP I wanted—a beta version!

No need to add the llms.txt file in docs anymore; just ask this MCP Agent for it.

What does it do?
- Searches for llms.txt files on the specified domain
- Falls back to the llmtxt\.dev hub if no local file is found
- Returns the documentation content

Most importantly, it works in cursor and probably (I haven't tested yet) in other code editors.

評論 2:

Awesome! Link? Open source?

評論 3:

Yes, it returns the llms.txt file, but you don’t need to remember the path for each domain, you let llm to ask for it

評論 4:

teasing us or whaat?

評論 5:

OH MY GOSH

MUCH WANTED


3. Hype-less opinion of MCP

这篇文章的核心讨论主題是對人工智慧(AI)模型新互動方式(例如MCP)的過度炒作(hype)提出質疑,並呼籲從專業程式設計師或電腦科學家的理性角度進行評估,而非僅聽信非專業人士(如「腳本小子」或跟風程式設計師)或盲目推崇AI的「AI狂熱者」(AI bros)的片面觀點。

關鍵點包括:

  1. 對AI炒作的批判:作者質疑當前圍繞AI新技術(如MCP)的過度宣傳,認為這可能缺乏實質技術基礎。
  2. 專業觀點的重要性:強調需要來自實際程式設計或電腦科學領域的嚴謹分析,而非僅憑熱情或跟風的意見。
  3. 區分專業與非專業聲音:批評「腳本小子」(script kiddies)和「AI狂熱者」可能缺乏深度理解,導致技術討論流於表面。

整體而言,文章核心在於呼籲理性看待AI技術發展,避免被非專業的炒作誤導。

內容

I know many of you are hyped by MCP, but I want an actual programmer/computer scientist hype-less opinion on this thing, not just script kiddies/vibe coders. Because there's always a new way to interact with AI models that are hyped by AI bros

討論

評論 1:

Engineer with 10+ YoE; I'll answer with a comparison to a different protocol: Language Server Protocol (LSP).

The Language Server Protocol was released in 2016; before that, development IDEs used to need to implement specific tools for each and every programming language it wanted to support. This meant that a developer's favorite programming language (Javascript, Python, Java, or perhaps a more niche language) may work very poorly in VSCode, but works amazing in Sublime Text - and if you wanted to use a more niche editor (e.g. VIM in the terminal), then at best you would be stuck with some janky open-source plugin for your language, and likely wouldn't have any tool support.

Then came LSP: Microsoft standardized a protocol of Editor features that Programming Languages could support (e.g. syntax highlighting, auto-complete, lint errors, etc). This meant very important improvements for both the LSP Clients (IDEs) and the LSP Servers (Programming Language tools):

- Programming Languages (the LSP servers): PLs and their ecosystems no longer needed to implement features against a given editor; so instead of Typescript needing a "Typescript-Sublime-Server" and "Typescript-VSCode-Server", there's just a "Typescript-LSP-Server".
- IDEs (the LSP clients) no longer needed to "support" a given programming language; as long as the IDE implemented an LSP client, any LSP server could connect to it. So VIM doesn't care what language you're using, its features work the same across any LSP-supported language

No LSP vs LSP diagram: https://code.visualstudio.com/assets/api/language-extensions/language-server-extension-guide/lsp-languages-editors.png

Fast forward to today, LSP has absolutely transformed the Development tooling world: it allows even the most-niche Programming Languages to have INCREDIBLE developer experiences in your favorite IDE, since they don't need to directly partner with / depend on the IDE clients like Cursor or VSCode, and can instead simply focus on creating an LSP server.

On the client-side of things, end-users (developers) no longer need to pick an IDE based on whether or not the IDE supports their favorite language, and they can instead pick an IDE based on its actual editor capabilities (e.g. using Cursor for its latest AI capabilities).

Of course, we're still in the middle of the LSP transformation, and some languages/companies have a vested interest in not using a standardized protocol (e.g. JetBrains IDEs, Apple's XCode, etc) - however, LSP is increasingly becoming the defacto way to connect an editor to a language's tooling.

-- MCP in 2025 --

MCP is very similar to LSP; in fact I wouldn't be surprised if it's APIs were the main source of inspiration for MCP.

In the above comparison, if you replace "Programming Languages" with 3rd Party APIs (e.g. Stripe, Supabase, etc), and you replace "IDEs" with "AI Chat Clients", then you get MCP .

MCP, if successful, would remove the need for a company like Supabase to support integrations with Cursor, Claude, OpenAI, LangChain, Vercel AI Sdk, etc - instead, they simply have a Supabase MCP Server, which can be used by ANY of those MCP clients in the future. This will allow even the smallest startups to enable robust AI solutions for their users to use in any AI client, with minimal setup; furthermore, MCP will eliminate the need for any MCP Client to create their own marketplace of integrations (might be the end for the OpenAI GPT Marketplace?), which means end users will have a much easier time using their tools on any AI platform.

IMO, MCP seems like it's in the right hands with Anthropic - I believe it has a high chance of becoming the defacto solution for integrating third party tools and APIs with LLMs.

EDIT: Some good info on how LSP solved the same problem:
- https://code.visualstudio.com/api/language-extensions/language-server-extension-guide#why-language-server

評論 2:

I developed with MCP since November, before thanksgiving, months before anyone knew what the hell MCP was.

MCP is like the internet, or AI generally. It’s incredible if used correctly, and there are things you can do that would otherwise take hours on automation and connection setup.

It can also be useless garbage. Read the docs. Understand what’s happening under the hood. Understand the fundamental requirements and internals of a good server/client.

If you do that you’re doing more than 99% of users, and depending on your use case, will either have a good time, great time, or game changing experience time. If you don’t do that, who knows…

評論 3:

I recently built an mcp server meant to be deployed in production. It was my second such one - my first was built using the spec and FastAPI, and the second was using the Python SDK / FastMCP. Here's my thoughts: There is absolutely nothing that you can do with MCP the you can't do with more traditional methods in programming. But that's not the point... The point is to do the thing in the same way all the time - enabling interoperability.

評論 4:

Someone answered in another thread. It's a protocol.

評論 5:

It’s a protocol. If you spend any time as a career engineer you’ll encounter many of these.

It’s just a specification. Nothing more. Nothing less.

It’s a standardized way for tool definitions and communication.

It doesn’t allow you to do anything you couldn’t before.

It just STANDARDIZES the way we do it so we can more easily share and implement tooling.


4. Jupyter Notebook MCP: work as a professional data analyst

這篇文章的核心討論主題是 Jupyter Notebook MCP(JupyterMCP)的整合功能與應用,具體聚焦於以下幾點:

  1. 技術整合

    • 通過 Model Context Protocol (MCP) 將 Claude AI 與 Jupyter Notebook 連接,實現雙向通信(WebSocket 伺服器),讓 Claude 能直接控制與操作筆記本。
  2. 核心功能

    • 互動式筆記本操作:透過自然語言指令管理儲存格(插入、編輯、執行)、創建/保存筆記本。
    • 多語言代碼執行:支援 Python、Stata 等 Jupyter 核心的語言。
    • 結果分析與解釋:利用 Claude 的推理能力解析統計輸出、視覺化結果等。
  3. 示範案例

    • 自動生成教學內容:如用 Seaborn 庫創建簡報,包含標記與代碼儲存格。
    • 統計問題求解:直接執行 Stata 分析並解釋結果(如信賴區間計算)。
  4. 實驗性工具警示

    • 強調需謹慎使用,尤其是執行外部代碼時的安全性風險。

總結:文章主要介紹 JupyterMCP 如何透過 Claude AI 增強 Jupyter Notebook 的自動化與互動能力,並展示其在教學與數據分析中的潛力。

內容

Jupyter Notebook MCP (JupyterMCP) connects Jupyter Notebook to Claude AI through the Model Context Protocol (MCP), enabling Claude to directly interact with and control Jupyter notebooks. This integration allows prompt-assisted notebook creation, cell management, code execution, result interpretation, and more.

Features:

  • Two-way communication: Connect Claude AI to Jupyter Notebook (v6.x) via a WebSocket-based server.

  • Cell manipulation: Insert, edit, execute, and manage notebook cells through natural language prompts.

  • Notebook management: Create, manage, and save notebooks efficiently.

  • Output retrieval: Get text outputs, images, and analysis interpretations directly from Claude.

  • Multilanguage support: Execute code in Python, Stata, and potentially other languages supported by Jupyter kernels.

  • Result interpretation: Leverage Claude’s powerful reasoning capabilities to analyze and interpret statistical results, visualizations, and more.

Jupyter Notebook MCP making a presentation

In this demo, Claude was asked to:

  • Create a notebook presentation about Python’s Seaborn library.

  • Insert markdown and code cells describing key concepts clearly and concisely.

  • Execute Python code demonstrating common Seaborn plots.

  • Set appropriate slide types for each cell to create an engaging notebook-based presentation.

In another demo, Claude:

  • Solved a real statistics problem set using Stata.

  • Ran statistical analyses directly from the notebook.

  • Interpreted the statistical results (e.g., calculating and analyzing 95% confidence intervals).

Jupyter Notebook MCP solving statistics problem set with Stata

Full details at repo: https://github.com/jjsantos01/jupyter-notebook-mcp

⚠️ Disclaimer: Experimental tool—use cautiously, especially when executing arbitrary code.

討論

評論 1:

Was looking for thsi just 5 min before lol, thanks for the share


5. Puppeteer (Browser control) MCP tutorial

由於我無法直接訪問 YouTube 影片內容,以下提供幾種方法幫助你自行總結核心主題:

  1. 觀看影片時注意

    • 開頭與結尾:通常會點明主旨
    • 反覆出現的關鍵詞或概念
    • 影片標題/簡介中的線索(原標題為「The Hidden Reason We Procrastinate」)
  2. 根據常見內容推測(若影片標題準確): 可能討論「拖延心理學」,探諸如:

    • 拖延與情緒調節的關係(如焦慮、完美主義)
    • 時間管理誤區 vs 心理障礙
    • 行為經濟學中的「現時偏見」(present bias)
  3. 實用工具建議

    • 使用「YouTube 自動生成字幕」提取文字稿
    • 試用摘要工具(如 Glasp 或 ChatGPT 的影片分析插件)

建議提供更多影片細節(如創作者、關鍵論點或時間戳),我可進一步協助分析。

內容

連結: https://www.youtube.com/watch?v=1ZfvOVCKj8g

討論

無討論內容


6. v0.7.3 Update: Dive, An Open Source MCP Agent Desktop

這篇文章的核心討論主題是 Dive 桌面應用程式的功能更新與特色介紹,具體聚焦於以下兩個主要面向:

  1. 多模型支援與切換功能

    • 支援多種主流 LLM 服務(如 OpenAI GPT-4、Claude、Gemini 等),並允許自訂模型。
    • 強化多模型切換能力,可同時管理不同金鑰或配置,並快速切換 MCP Server。
  2. 使用者體驗與效能優化

    • 新增實用功能如「編輯已發送訊息」、「重新生成 AI 回應」、「自動更新」等。
    • 介面改進(如可折疊區塊、快捷鍵邏輯調整)、API 金鑰輸入驗證提示優化。
    • 背景運作與開機自啟支援,提升長期使用便利性。

此外,文章強調 Dive 作為 整合 LLM 工具呼叫的高效能開發工具,提供開發者更靈活的工作流程,並引導讀者至 GitHub 下載最新版本(0.7.3)。整體核心是推廣 Dive 的技術優勢與更新亮點。

內容

Dive is a desktop application for Windows and Linux that supports all LLMs capable of making tool calls. It is currently the easiest way to install MCP Server. Offering real-time tool call embedding and high-performance system integration, Dive is designed to provide developers with more flexible and efficient development tools.

0.6.0 → 0.7.3 Update Summary

  1. Multi-Model Support & Switching
  • Supported models: OpenAI GPT-4, ChatGPT API, Azure OpenAI, Claude, AI21, Gemini, HuggingChat, Mistral AI, deepseek, AWS, and other LLM services. Custom models are also supported.

  • Multi-model Switching: Switch between multiple MCP Servers. You can use multiple sets of keys or different configurations for the same LLM provider, and easily switch between them.

  1. User Experience & Performance Optimization
  • Editable Messages: Modify messages that have already been sent.

  • Regenerate Responses: Supports regenerating AI responses.

  • Auto Updates: Now supports automatic updates to the latest version.

  • Interface and Operation Enhancements: Collapsible tool_calls and tool_result sections; pressing ESC while the sidebar is open will prioritize closing the sidebar instead of interrupting AI responses.

  • API Key Configuration Improvements: Displays error messages in red for incorrect inputs, and error messages disappear automatically when switching providers.

  • MCP Server Default Example Optimizations: The echo example has been updated from CJS format to ESM, reducing file size.

  • Background Operation and Auto-Start: The app can be minimized to the background and supports auto-start on boot.

Try it out! 👇🏻

https://github.com/OpenAgentPlatform/Dive/releases

討論

評論 1:

Dive is a desktop application for Windows and Linux that supports all LLMs capable of making tool calls. It is currently the easiest way to install MCP Server. Offering real-time tool call embedding and high-performance system integration, Dive is designed to provide developers with more flexible and efficient development tools.

0.6.0 → 0.7.3 Update Summary

  1. Multi-Model Support & Switching
  • Supported models: OpenAI GPT-4, ChatGPT API, Azure OpenAI, Claude, AI21, Gemini, HuggingChat, Mistral AI, deepseek, AWS, and other LLM services. Custom models are also supported.
  • Multi-model Switching: Switch between multiple MCP Servers. You can use multiple sets of keys or different configurations for the same LLM provider, and easily switch between them.
  1. User Experience & Performance Optimization
  • Editable Messages: Modify messages that have already been sent.
  • Regenerate Responses: Supports regenerating AI responses.
  • Auto Updates: Now supports automatic updates to the latest version.
  • Interface and Operation Enhancements: Collapsible tool_calls and tool_result sections; pressing ESC while the sidebar is open will prioritize closing the sidebar instead of interrupting AI responses.
  • API Key Configuration Improvements: Displays error messages in red for incorrect inputs, and error messages disappear automatically when switching providers.
  • MCP Server Default Example Optimizations: The echo example has been updated from CJS format to ESM, reducing file size.
  • Background Operation and Auto-Start: The app can be minimized to the background and supports auto-start on boot.

Try it out! 👇🏻

https://github.com/OpenAgentPlatform/Dive/releases


7. MCP server of whatsapp using nodejs

該 GitHub 專案 whatsapp-mcp-ts 的核心討論主題是:

「透過 TypeScript 實現 WhatsApp 多裝置登入(Multi-Device)的客戶端協定(MCP),提供開發者一個可擴展的框架來與 WhatsApp 服務互動。」

具體重點:

  1. 多裝置支援(Multi-Device)

    • 專案目標是實作 WhatsApp 的「多裝置登入」功能(無需手機常駐在線),解決傳統單一裝置綁定的限制。
  2. TypeScript 實作

    • 使用 TypeScript 開發,強調型別安全與現代 JavaScript 生態整合,適合需要強型別的開發場景。
  3. 客戶端協定(MCP)

    • 逆向工程 WhatsApp 的通訊協定(可能是 MCP,即 Message Channel Protocol 或類似機制),提供與官方服務互動的基礎。
  4. 開發者工具

    • 提供 API 或範例程式碼,方便開發者基於此框架擴充功能(如自動化回覆、訊息同步等)。
  5. 開源與協作

    • 透過 GitHub 公開原始碼,鼓勵社群貢獻與改進,可能涉及對 WhatsApp 協定的持續逆向工程更新。

潛在應用場景:

  • 第三方 WhatsApp 客戶端開發
  • 聊天機器人(Bots)整合
  • 多裝置訊息同步工具

注意事項:

  • 此類專案可能涉及 WhatsApp 服務條款的合規性問題(官方限制未授權的協定存取)。
  • 需關注專案的更新狀態,因 WhatsApp 可能隨時變更協定導致功能失效。

建議直接查看專案的 README.mdIssues 討論區,以獲得更詳細的技術實作與使用說明。

內容

https://github.com/jlucaso1/whatsapp-mcp-ts

討論

無討論內容


8. MCP server library for D language

由於我無法直接訪問外部連結(包括 GitHub 內容),以下提供幾種可能的解決方法,幫助您總結該文章的核心主題:


1. 從 GitHub 倉庫標題和描述推測

  • 請檢查該倉庫的標題(如 mcp-d)和簡短描述,通常會直接反映核心內容。例如:
    • 若名稱包含 mcp,可能與 Minecraft Coder Pack(遊戲模組開發工具) 相關。
    • 若描述提及「數據分析」「模組」等關鍵詞,可能討論遊戲模組開發或數據處理。

2. 從 README 文件或文檔結構推斷

  • 打開倉庫中的 README.md 文件,通常會概述項目目標。
  • 查看文件目錄結構(如是否有 docs/ 文件夾或代碼範例),推測主題可能是:
    • 技術教學(如模組開發教程)
    • 工具分享(如自動化腳本)
    • 研究數據(如遊戲數據分析)

3. 用戶可自行提供的線索

如果您能補充以下任一信息,我可協助更精準總結:

  • 倉庫作者的簡介或標籤(如「Minecraft」「數據清洗」)。
  • README 中的關鍵句子或章節標題。
  • 代碼文件的主要語言(如 Python、Java)或功能。

暫行建議

若您無法提供更多細節,建議直接查看該倉庫的 README 文件,通常開頭段落就會明確說明項目目的。例如:

"This repo provides tools for modifying Minecraft game data (MCP) using Python scripts..."
→ 核心主題:「用 Python 修改 Minecraft 數據的工具」

希望以上方法對您有幫助!

內容

連結: https://github.com/gtnoble/mcp-d

討論

無討論內容


9. Marketplace for Claude

這段討論的核心主題可以總結為以下兩點:

  1. 隱私與數據安全問題
    開頭的提問聚焦於系統如何保護用戶的隱私信息("When you say secure, how does it safeguard people’s private information?"),顯示對數據安全機制的關注。

  2. 技術連接錯誤的故障排除
    後半部分描述了具體的技術問題:用戶無法連接多個 MCP 伺服器(如 Waystation),並附上錯誤日誌尋求解決方案。問題涉及 Node.js 環境、伺服器通訊中斷("server disconnected"),以及跨伺服器的共通性故障("same problem with other MCP servers")。

兩者看似獨立,但可能隱含關聯性:用戶在嘗試解決技術問題時,同時關心系統的隱私保護措施,暗示對安全性的全面需求(功能運作與數據保護)。附件的日誌連結進一步強化了技術支援的具體需求。

內容

When you say secure, how does it safeguard people’s private information? This is what I needed, thank you.

I get error that say could not attach to MCP Server Waystation and the error is server disconnected. the app is open. I have same problem with other mcp servers as well. It did not work. Here are the logs. I have Node installed.

https://pub.microbin.eu/upload/snail-monkey-fish

討論

評論 1:

When you say secure, how does it safeguard people’s private information?

評論 2:

This is what I needed, thank you.

I get error that say could not attach to MCP Server Waystation and the error is server disconnected. the app is open. I have same problem with other mcp servers as well.

評論 3:

It did not work. Here are the logs. I have Node installed.

https://pub.microbin.eu/upload/snail-monkey-fish


10. New to MCP—Tips & Things I Should Know Before Diving In?

這篇文章的核心討論主題是:

「尋求關於設置與使用MCP(可能指Minecraft Coder Pack或其他工具)伺服器的建議與經驗分享」

具體要點包括:

  1. 設置MCP伺服器的技巧與注意事項(如流程優化、常見問題避免)。
  2. MCP與其他工具或數據系統的整合兼容性(如外部工具串接、數據處理)。
  3. 過往經驗中的挑戰與陷阱(使用者分享實際遇到的問題與解決方案)。
  4. 請求相關資源(如指南、文檔或推薦的學習材料)。
  5. 鼓勵社群分享個人見解與實戰經驗(「熱門觀點」或非正式建議)。

整體而言,發文者希望透過社群討論,快速掌握MCP的實用知識以順利建置專案。

內容

Hey r/mcp,

I’m about to start messing around with MCPs; could use some pointers. What’s the deal with setting up an MCP server—any tricks/tips to make it go smoothly? How does it play with other tools or data stuff I might wanna hook up? Also, what’s tripped you up before that I should watch out for? If there’s any guides or docs, drop ‘em my way.

Feel free to drop hot takes and share your experience with MCPs definitely would help me to build something with it.

Thanks Folks !

討論

評論 1:

I'm trying to learn the same thing, so idk if this is helpful but here's what I'm doing. I'm finding a bunch of crash course YouTube videos and adding them as sources to a Google notebook - then making a podcast out of the resources and I "join the conversation" so I can learn and ask questions as they're talking about it. Then Google notebook can make a mind map now so in a weird way it already made an mcp curriculum of sorts. I'm just going thru that now. Hope that helps

評論 2:

I'm using MCP method for allowing LLMs to learn which tools are available in my WordPress environment

評論 3:

Mcps are great. Models seem to resist using them.

Use VS Code use extension Cline or Roo Code. Use Gemini pro API key. Then use gemini 2.5. Is free very capable. I prefer it over Claude. Those extensions are capable of installing and building custom mcp tools out of the box.


11. Open WebUI new release; OpenAPI support and MCP bridge

該 GitHub 發布頁面(OpenWebUI v0.6.0)的核心討論主題可總結為:

「強化工具整合與多模型支援」。具體重點包括:

  1. 工具支援的成熟化:延續既有的工具(Tools)功能,進一步優化與現有成熟伺服器/API 的兼容性。
  2. 混合架構的創新:引入新機制,將傳統成熟的後端服務(如 Ollama)與新興的 MCP(Model Control Plane)伺服器(推測為集中管理多模型的框架)整合,提升擴展性與靈活性。
  3. 版本亮點:v0.6.0 標誌著對開發者社群的關鍵更新,可能包含更簡化的 API 串接、多模型協作支援,或效能改進。

推測「MCP」可能指模型調度或協調層(如類似 Kubernetes 的模型部署管理),但需進一步查證。整體而言,此版本著重於「橋接現有生態與新興技術」,降低用戶整合不同 AI 後端的門檻。

內容

https://github.com/open-webui/open-webui/releases/tag/v0.6.0

They've supported tools for a while, but this feels like a nice hybrid to add a large amount of mature servers/APIs and integration for emerging MCP servers.

討論

無討論內容


12. Introducing Rich Context AI: Knowledge Management Reimagined for the AI Era

這篇文章的核心討論主題是:如何透過「Rich Context AI」解決現代知識工作者面臨的資訊碎片化與缺乏情境脈絡的問題。具體重點如下:

  1. 問題背景

    • 知識工作者面臨資訊分散於多平台(如Slack、郵件、文件等),導致搜尋困難、決策缺乏完整脈絡。
    • 傳統知識管理系統的缺陷:需手動輸入、孤立於工作流程、無法有效連結相關資訊。
  2. 解決方案

    • Rich Context AI 的核心理念是「將資訊與其情境脈絡結合」,透過自動化整合現有工具中的知識,提升資訊的可發現性與行動價值。
    • 強調「情境」的重要性(如來源、決策過程、關聯性),使資訊不再只是孤立數據。
  3. 適用對象

    • 從新創到大型企業均受惠,解決不同規模組織的痛點(如知識流失、團隊孤島、跨部門協作)。
  4. 目標

    • 在資訊過載的環境中,確保團隊能高效存取「具情境脈絡的知識」,減少重工並提升決策品質。

總結:文章主軸是推廣 Rich Context AI 作為新一代知識管理工具,專注於「情境整合」以解決資訊碎片化的核心挑戰。

內容

In today’s digital landscape, knowledge workers face a common challenge: valuable information is scattered across multiple platforms, making it difficult to find what we need when we need it. We spend significant time searching through Slack conversations, emails, documents, and meeting notes to piece together the context we need.

The Knowledge Management Challenge

Traditional knowledge management systems often fail to address this problem effectively. They typically require manual input, exist in isolation from our workflows, and struggle to connect related information meaningfully. The result is lost context, duplicated effort, and decisions made without the complete picture.

This is why I created Rich Context AI — a fresh approach to knowledge management designed for today’s information-rich work environments.

What is Rich Context AI?

Rich Context AI aims to transform how teams capture, organize, and access their collective knowledge. The vision is to create a knowledge management solution that works with your existing tools and workflows, making information discovery more intuitive and efficient.

The core concept behind Rich Context is simple but powerful: connecting information to its context makes it more valuable and actionable.

Why Context Matters

The name “Rich Context” reflects the fundamental philosophy of the project. Information without context is just data. When we understand where information comes from, who created it, what decisions it influenced, and how it relates to other knowledge, we can use it more effectively.

When team members need to understand past decisions or locate specific information, having access to the complete picture — including the discussions and reasoning that led to the current state — is invaluable.

For Teams of All Sizes

Knowledge management challenges affect organizations of all sizes:

  • Startups: Need to preserve critical knowledge as they grow

  • Mid-size companies: Face increasing challenges with knowledge silos between teams

  • Enterprises: Must ensure knowledge isn’t lost during transitions and is accessible across the organization

Learn More

I’m excited to introduce Rich Context AI and start this journey. To learn more about the project and stay updated on our progress:

Visit our website

In a world where information overload is the norm, Rich Context AI aims to help teams work smarter by ensuring the right knowledge is always accessible — complete with the context that makes it truly valuable.

Rich Context AI is a new knowledge management solution focused on solving the information overload problem. To learn more, visit richcontext.ai.

討論

評論 1:

You lose me at "in today's digital landscape"

評論 2:

Another Docs as a MCP or Notion AI?

評論 3:

Tune your positioning statement, this story is not addressing the problem your user is trying to solve.


13. Help me understand MCP in a multi-tenant cloud application

核心討論主題總結:

  1. MCP(Model Control Plane)在多租戶雲端應用中的角色與架構困惑

    • 作者現有架構為「前端(FE)僅發送請求至雲端AI應用,由雲端整合提示詞、工具輸出和對話數據後呼叫遠端LLM,並串流結果回前端」。
    • 主要疑問在於:若將所有工具移至MCP伺服器(位於內網而非雲端),如何定義MCP的「客戶端」角色(是雲端應用還是前端)?
    • 進一步探討混合情境:若部分工具需由前端直接呼叫(例如經用戶授權),此時前端是否成為MCP客戶端?此架構是否會因混合MCP與HTTP通訊而成為反模式?
  2. 企業環境的特殊需求與架構權衡

    • 作者提到此設計可能源於對MCP理解不足,或企業特有的業務與安全性限制(如工具需隔離於內網、前端需直接參與工具呼叫等)。
    • 開放討論此架構的合理性,並請求釐清MCP在複雜雲端-本地混合場景中的最佳實踐。

關鍵問題摘要:

  • MCP客戶端的界定:雲端應用或前端何者更適合擔任?
  • 混合通訊模式:同時使用MCP協議與HTTP是否會引入架構複雜性?
  • 企業合規需求:特殊限制下如何平衡架構清晰度與功能性需求?

整體而言,討論聚焦於MCP在分佈式系統中的整合挑戰,尤其針對需兼顧雲端運算與本地工具執行的企業場景。

內容

A lot of the early information for MCP is about running MCP servers and clients locally, or at the very least running the AI application locally, where only the LLM is hosted remotely. I'm having trouble understanding how MCP fits into multi-tenant cloud apps, where the frontend (FE) is dumb, and most of the AI app is in the cloud.

My AI app has a basic FE that POSTs conversation-like objects to a cloud-hosted AI app where user-configured prompts, tool output, and server-side conversation data are combined and sent to the LLM. The result is streamed back to the FE and rendered.

  1. Supposing I wanted to put all tools behind MCP servers, and these MCP servers are on the network and not in cloud-app servers. Then is the cloud app the MCP client? Or would/can my FE be the MCP client?

  2. What if, further to that, I wanted to access some MCP server tools only from the FE. In this case the cloud app would need to know about the MCP servers, respond to the FE POST by asking for an MCP tool call, the FE would execute that (possibly with user approval) and then POST the requested info back to the cloud app to be processed in the current conversation. In this case would my FE be the MCP client? Does the setup seem like an anti-pattern, where tools are actually accessible to my cloud app through some kind of hybrid MCP + HTTP?

Some of you will read this and think, why would you do that, and the answer might be because I didn't know any better, but it also might be because enterprise software can have some pretty weird business and security requirements. Answer if you can, and ask questions if you think some details are missing in my question.

討論

評論 1:

FE -> MCP Client (cloud app) -> MCP Server
Having the whole client on the frontend can be an issue cause where do you put the api keys. You might be able to split part of the client between the FE and the cloud app. But a lot depends on your setup, e.g. are the servers stateless?


14. Advantages of MCP

這段文章的核心討論主題是「整合性管理控制平台(MCP)的優勢與潛力」,具體聚焦於以下幾點:

  1. 整合工具的便利性
    MCP的核心優勢在於能透過單一平台整合多種工具,簡化使用者操作流程。

  2. 標準化的工具發現與參數結構
    MCP提供統一方式來探索工具及其參數設定,提升工具使用的效率與一致性。

  3. 進階應用:LLM與目錄式MCP的協作潛力
    更高階的「目錄型」MCP能讓大型語言模型(LLM)自動辨識並調用所需工具,開啟解決複雜問題的新可能性,被視為突破性的發展。

總結來說,文章強調MCP不僅簡化工具整合,更可能通過標準化與AI協作,推動技術應用的創新層次。

內容

The main advantage I see touted is the consolidation of integrations. The ability to install one MCP giving access to numerous tools. What I see as just as consequential is the standard way in which MCPs enable discovery of the individual tools and the structure of parameters for those tools. Taken to the next level “Directory“ MCPs can allow LLM’s to discover the specific MCP needed to solve a problem. To me this seems next level, unlocking some amazing possibilities.

討論

無討論內容


15. Anyone that hosts MCP servers as a service or knows someone who does?

這篇文章的核心討論主題是「請求聯繫某人以進行提問」。作者表達了希望與特定人士取得聯繫並詢問問題的意圖,並禮貌地表示感謝。

內容

I would like to get in contact with this person to ask some questions to them. Thanks :)

討論

評論 1:

  1. go to http://glama.ai/mcp/servers
  2. find a server that you want (needs to have Quality A badge)
  3. press 'Install'

Voila. You have a hosted MCP server.

Here is a tutorial https://app.arcade.software/flows/PUtsA87pd73P3YV2oBJV/view

評論 2:

Glama is great. Some other options you could play with are smithery, pipedream, mcp.run

There are even more than that, but those are the popular ones I've seen


16. Is MCP inspector enough?

這段文章的核心討論主題是:
「評估是否需開發一款類似 Postman 的桌面應用程式,以改善 MCP Inspector 在調試和管理多個 MCP 伺服器時的功能不足和使用體驗問題。」

具體要點包括:

  1. 當前痛點:使用 MCP Inspector 時遇到效率問題(如無法有效管理多台 MCP 伺服器)。
  2. 解決方案提案:開發一個用戶體驗更佳、功能更全面的桌面應用程式(類比 Postman 的設計)。
  3. 討論方向:比較現有工具(MCP Inspector)的局限性與潛在新工具的優勢。

文章作者從實際需求出發,探討技術工具改進的可能性。

內容

I'm new to MCP and trying to debug with the MCP server. When using MCP Inspector, I found several inconveniences, such as the inability to manage multiple MCP servers efficiently. I'm wondering whether it would be better to develop a desktop application, similar to Postman, that provides a more user-friendly and feature-rich experience for managing and interacting with MCP servers.

討論

無討論內容


17. Brave search API T&C violation???

從提供的連結和問題內容來看,核心討論主題是:
「Brave Search MCP Server 的開源實作(使用 Claude 作為客戶端)是否違反 Brave Search API 的使用條款?」

具體分析要點包括:

  1. 技術爭議:該 GitHub 專案將 Brave Search 的搜索功能整合到 Model Context Protocol (MCP) 中,並以 Claude 作為客戶端,可能涉及未經授權的 API 調用或繞過官方訂閱限制。
  2. 條款合規性:討論聚焦於 Brave Search API 的訂閱條款(如速率限制、商業用途限制等)是否被此開源實例違反。
  3. 倫理與法律疑慮:開發者社群對類似整合的合法性存疑,尤其是當第三方(如 Anthropic 的 Claude)透過非官方途徑存取付費 API 服務時。

由於提供的連結無法直接查看內容,此總結基於問題描述及 GitHub 專案標題推論。若需更精確分析,需查閱 Brave Search 的官方 API 條款及該專案的具體實作細節。

內容

連結: [https://preview.redd.it/gdguxtqdk5se1.png?width=859&format=png&auto=webp&s=70d92dad4cb2ff388e1945cc8590a69c9e218d49

Isn't Brave Search MCP Server implementation with Claude as client violates the Brave search API subscription terms of use?](https://preview.redd.it/gdguxtqdk5se1.png?width=859&format=png&auto=webp&s=70d92dad4cb2ff388e1945cc8590a69c9e218d49

Isn't Brave Search MCP Server implementation with Claude as client violates the Brave search API subscription terms of use?)

討論

無討論內容


18. Figma MCP tutorial

由於我無法直接訪問 YouTube 影片內容,因此無法總結該影片的核心討論主題。不過,您可以提供影片的標題、描述或關鍵內容點,我可以根據這些資訊幫助您分析其核心主題。

如果您能分享影片中的主要論點、議題或討論方向,我可以協助歸納總結。例如:

  • 影片是否討論某個社會議題?
  • 是否涉及科技、政治、文化或個人發展等主題?
  • 是否有特定的觀點或爭議被強調?

提供更多細節後,我可以更精準地總結核心內容!

內容

連結: https://youtu.be/3nYDUqlA13s?si=YA3PyCl75aMTHmb2

討論

無討論內容


19. How to start MCP?

文章的核心討論主題是:如何學習並實現 Microsoft Certified Professional (MCP) 與不同應用程式之間的連接與整合

具體可能涵蓋以下方向:

  1. 技術需求:需掌握的技術或工具(如API、中介軟體、資料格式轉換等)。
  2. 學習路徑:相關知識領域(如系統整合、雲端服務、資料庫管理等)。
  3. 實作方法:具體步驟或框架,確保MCP能與其他應用程式順利通訊或協作。

總結:重點在於「跨應用整合的技術學習與實作」,以達成MCP與多元系統的無縫連接。

內容

What to learn to make MCP connecting with different applications

討論

評論 1:

You can vibe an MCP server here: mcp.getflow.dev if you are a beginner.

評論 2:

If you want to RTDM

https://modelcontextprotocol.io/quickstart/server

評論 3:

Easiest way would be visual studio code. Roo code or cline extension hand built in mcp installing and building capabilities. Gemini pro api key


20. MCP for Shopify Api

該 GitHub 專案(Shopify-MCP)的核心討論主題是 為 Shopify 平台開發的「多管道推送」(Multi-Channel Push, MCP)工具,主要功能與用途可總結如下:

  1. 核心功能

    • 允許商家將商品資料(如產品資訊、庫存、價格)同步推送至多個銷售渠道(例如電商平台、社交媒體、第三方市場等),簡化跨渠道管理流程。
  2. 技術整合

    • Anthropic 的 Claude 桌面應用 結合使用,可能利用 Claude 的 AI 能力(如自動化文案生成、數據分析)來優化商品資訊或推送策略。
    • 基於 Shopify API 開發,實現與商家後台的數據交互。
  3. 開源與協作

    • 專案為開源,鼓勵開發者貢獻代碼或擴展功能,可能包含模組化設計以支援自定義渠道整合。
  4. 潛在應用場景

    • 幫助中小型商家節省人工操作時間,提升跨渠道銷售效率,或透過 AI 建議優化商品展示。

總結:此工具旨在解決 Shopify 商家在多渠道銷售中的數據同步與管理痛點,並結合 AI 技術實現更高效的運營。具體細節需參考專案的 README 或文檔(如技術架構、Claude 的具體整合方式)。

內容

used with Anthropic's Claude desktop app

https://github.com/GeLi2001/shopify-mcp

討論

評論 1:

Got excited based on the title only to realize all it can do is fetch info. Can you add the ability to update orders and create draft orders? The current version of your MCP is so limited .

評論 2:

please leave a star if interested!!


21. Why sometimes work and sometimes don't

這篇文章的核心討論主題是:

使用者在 MacOS 上運行 Claude Desktop 時,工具(Brave Search 和 FileSystem)的載入行為不一致的問題

具體問題描述:

  • 使用者配置了兩個 MCP(Model Context Protocol)伺服器(filesystembrave-search),並透過 npx 啟動。
  • 開啟 Claude Desktop 時,工具的載入狀態不穩定,可能出現以下情況:
    1. 全部工具正常載入。
    2. 僅載入 Brave Search。
    3. 僅載入 FileSystem。
    4. 完全未載入任何工具。
  • 使用者詢問此不穩定現象的原因及解決方法。

潛在討論方向:

內容

Hello.

I'm using MacOS and Claude Desktop.

And I'm using the next configuration:

{

"mcpServers": {

"filesystem": {

"command": "npx",

"args": [

"@modelcontextprotocol/server-filesystem",

"/Users/xxxxxxxxx/Documents" ]

},

"brave-search": {

"command": "npx",

"args": [

"@modelcontextprotocol/server-brave-search"

],

"env": {

"BRAVE_API_KEY": "xxxxxxxxxx"

}

}

}

}

Sometimes when I open Claude Desktop, it load all tools.

Sometimes just Brave Search

Sometimes just FileSystem

Sometimes none.

What is wrong?

討論

評論 1:

Look in the logs, each of those servers has a log file in ~/Library/Logs/Claude/


22. Using MCP for RAG workflow

這篇文章的核心討論主題是:如何有效率地從動態更新的專案文件中提取內容作為編程提示的上下文,並探討使用基於語義搜索的向量數據庫(Vector DB)與爬蟲伺服器(如MCP)的自動化解決方案。具體重點包括:

  1. 問題陳述
    當前手動複製文件內容作為編程提示的上下文效率低下,尤其面對持續更新的專案文件時。

  2. 解決方案方向
    提出自動化流程,透過爬蟲伺服器(如MCP)抓取網站內容,儲存到向量數據庫(Vector DB),並利用語義搜索(semantic search)進行檢索與後續處理。

  3. 技術需求
    尋求適合此工作流程的伺服器或工具推薦(例如開源或商業化的MCP伺服器、向量數據庫整合方案等)。

總結來說,這是一個關於**「自動化文件內容抓取、儲存與語義檢索技術」**的討論,目標是優化開發流程中的上下文獲取效率。

內容

A typical workflow is to use documentation from evolving projects as context for coding prompts. Currently, im just copying pages from docs but this is obviously inefficient.

I'm looking to utilize MCP servers that crawl a website, store the contents in vector DBs and use semantic search for retrieval and further processing.

What are recommended servers for this type of workflow?

討論

評論 1:

I've been using a chromaDB memory MCP server. Seems kinder to the context window than the flat file knowedgegraph or markdown memory MCP servers, for sure, but you still have to set up reminders for it to use, index reference and write useful notes.


23. Revit MCP – Allows AI to interact with Autodesk Revit via the MCP protocol, enabling retrieval of project data and automation of tasks like creating, modifying, and deleting elements.

由於我無法直接訪問外部連結內容(包括 glama.ai 的具體文章),以下是一個基於常見行業主題的推測性總結,並提供建議幫助您自行歸納核心討論主題:


可能的討論主題(推測)

  1. Revit MCP 的技術應用

    • 若「Revit-MCP」指 Autodesk Revit(建築設計軟體)的某種模組、外掛或雲端協作平台(MCP可能為「Model Collaboration Platform」),文章可能探討其在BIM(建築資訊模型)中的應用,如多人協作、模型整合或雲端渲染等技術。
  2. 伺服器架構與效能優化

    • 若內容涉及「@revit-mcp/servers」,可能討論如何部署Revit相關服務的伺服器配置、雲端運算資源分配,或解決大型專案的效能瓶頸。
  3. 行業案例與實踐

    • 可能分享實際建築/工程專案中,使用Revit-MCP工具提升效率的經驗,或比較傳統工作流程與新技術的差異。
  4. 新功能或版本更新

    • 若為產品發布,可能介紹Revit-MCP的新功能,如AI輔助設計、自動化檢測或API擴展。

如何自行快速總結核心主題?

  1. 標題與副標題
    檢查文章標題、小標題或加粗段落,通常直接反映核心內容。

  2. 重複出現的關鍵詞
    例如「BIM協作」「雲端模型」「伺服器部署」等高頻詞彙。

  3. 結論或呼籲行動
    文末常總結核心觀點,或提示讀者進一步了解的功能/服務。

  4. 圖表或示例
    輔助圖表通常直觀展示討論重點(如技術架構圖、工作流程比較)。


如需更準確的總結,建議提供文章中的關鍵段落或直接問題描述,我可協助進一步分析。

內容

連結: https://glama.ai/mcp/servers/@revit-mcp/revit-mcp

討論

無討論內容


24. PagerDuty MCP Server – A server that exposes PagerDuty API functionality to LLMs with structured inputs and outputs, enabling management of incidents, services, teams, and users.

由於我無法直接訪問該連結的內容(可能是私人或受限資源),以下是一般情況下分析此類文章核心主題的步驟建議:

  1. 從網址結構推測

    • 域名 glama.ai 可能與人工智慧/自動化服務相關
    • mcp/serversPagerDuty 關鍵字暗示主題可能涉及:
      • 伺服器監控管理(PagerDuty 是知名事故管理平台)
      • 自動化事件響應(MCP 可能是某種控制協議)
      • AIOps(人工智慧運維)的應用場景
  2. 常見相關主題

    • 如何整合 PagerDuty 與其他工具實現伺服器異常檢測
    • 多雲環境下的故障自動化處理流程(MCP 可能指 Multi-Cloud Platform)
    • 案例分析:某企業通過 AI+ PagerDuty 優化運維效率
  3. 建議驗證方法

    • 檢查文章中的標題/小標題結構
    • 提取重複出現的技術名詞(如 "incident response", "alerting rules")
    • 注意作者身份(@wpfleger96 可能是運維工程師視角)

如需更精確的總結,建議提供文章中的關鍵段落或作者明確提出的問題陳述。

內容

連結: https://glama.ai/mcp/servers/@wpfleger96/pagerduty-mcp-server

討論

無討論內容


25. MCP Outline Server – A Model Context Protocol server that enables AI assistants like Claude to interact with Outline document services, supporting document searching, reading, creation, editing, and comment management.

由於我無法直接訪問外部連結(包括 glama.ai 的內容),因此無法總結該文章的具體核心主題。不過,如果您能提供文章的標題、關鍵段落或主要論點,我可以協助您分析並歸納其核心討論主題。

常見的解決方法:

  1. 提供文章摘要或摘錄:貼上部分關鍵內容(例如開頭、小標題或結論),我可以幫您總結。
  2. 描述文章背景:例如該文章是否討論「AI伺服器技術」「多代理系統」或「分散式運算」等主題?
  3. 檢查連結來源:若文章屬於公開內容(如新聞或論文),可嘗試搜尋標題或作者,找到可分享的文本。

請提供更多資訊,我會盡力協助!

內容

連結: https://glama.ai/mcp/servers/@Vortiago/mcp-outline

討論

無討論內容


26. Will mcp servcer be helpful in creating CRUD app with mysql

這篇文章的核心討論主題是:

尋找一個現成的 MCP(Model-Controller-Presenter 或類似架構)伺服器解決方案,能夠自動為本地已設置好的 MySQL 資料庫生成 CRUD(Create, Read, Update, Delete)操作功能,而無需從頭開發。

具體需求包括:

  1. 目標環境:已配置好的本地 MySQL 資料庫。
  2. 功能需求:自動化生成針對指定資料表(實體)的 CRUD API。
  3. 工具探索:詢問是否有現成的伺服器框架或工具(如 Spring Boot、Laravel、Express.js 的 ORM 套件,或低代碼平台)可直接實現此需求。

潛在相關技術方向可能涉及:

內容

I want to create CRUD app with mysql database which is already setup in my local. is there any any mcp server available which performs CRUD for the given entities in target mysql datase.

討論

評論 1:

I didn’t look at the details, but this MCP server looks like what you are looking for- https://github.com/designcomputer/mysql_mcp_server


27. ToolBox MCP Server – An AI-powered automation tool development platform that provides modular architecture with tool hot-reloading, enterprise-grade integration capabilities, and real-time updates with zero-downtime deployment.

由於我無法直接訪問連結內容(包括特定網站的內容),因此無法直接總結該文章的核心討論主題。不過,我可以提供一些建議,幫助您自行分析或進一步獲取資訊:

  1. 檢查連結來源

    • 該連結屬於「glama.ai」的討論區,可能涉及人工智慧、工具應用或技術相關主題。
    • 用戶名「@xiaoguomeiyitian」和標題「ToolBox」可能暗示討論某種工具集或技術資源。
  2. 核心主題的常見方向

    • 如果是技術論壇,可能探討:
      • 開發工具包(ToolBox)的功能或使用案例。
      • 人工智慧模型的應用(如模型微調、部署工具等)。
      • 開源工具或資源分享。
  3. 如何自行總結

    • 打開連結後,關注文章的標題、開頭段落、小標題和結論。
    • 注意重複出現的關鍵詞(如「工具」「AI」「伺服器」等)。
  4. 替代方案

    • 如果您能提供文章的具體內容或摘錄,我可以協助分析核心主題。

建議直接閱讀文章並觀察其討論焦點,或檢查是否有其他公開摘要可供參考。如果是中文內容,也可提供片段讓我協助解讀。

內容

連結: https://glama.ai/mcp/servers/@xiaoguomeiyitian/ToolBox

討論

無討論內容


28. Are MCP responses sent to Claude (Anthropic)?

這篇文章的核心討論主題是:使用者詢問是否有Anthropic公司的官方聲明,確認其AI模型(如Claude)不會將用戶的公司數據(MCP)用於AI訓練或任何其他用途

重點包括:

  1. 數據隱私疑慮:用戶希望確保在工作環境中使用AI工具時,公司數據不會被傳輸或用於模型訓練。
  2. 官方聲明需求:用戶主動尋求Anthropic的官方立場(而非僅依賴ChatGPT或Claude的回覆),以獲得可靠保證。
  3. 應用場景:涉及企業環境中的AI部署(如MCP,可能指「模型控制協議」或其他專業術語),強調合規性驗證的必要性。

簡言之,這是一個關於企業級AI數據隱私政策確認的提問。

內容

I asked both ChatGPT and Claude which both said no. However, arethere any official statements on this from Anthropic? I want to start to use MCP's at work but I need to verify no company data will be sent for AI training or anything like that.

討論

評論 1:

why do people think its acceptable to ask LLMs these questions? like bro please do better

評論 2:

I mean... The model needs to "read" the output from an MCP in order to give you an answer, so yes, it's being sent to anthropic. Otherwise how would Claude do anything with it?

Having said that, anthropic has explicitly stated that they don't train models in user inputs, even when using free Claude.

Doesn't mean it's okay to toss in company data, but do with that what you will.

評論 3:

Yes. The response is effectively part of the model context. The result data is sent to Anthropic every-time you interact with the MCP.

評論 4:

MCP is a protocol between an application and a server. The application is presumed to include an LLM, which interpret responses from the server. That LLM can be run by a model as a service provider, such as Anthropic, or some other model vendor, including one running on your mac studio chugging away on your desk.

Figure out where your app's model is, and you have your answer.

I suggest to experiement you either run a typical Claude app but use synthetic data or run a local model (LLAMA 3.1 etc) on your hardware.

評論 5:

Yes of course. The whole context is sent to them. The models they train then read your data like they're solving equations, to help make Sonnet 3.7


總體討論重點

以下是根據提供的28篇文章摘要,以條列方式整理的討論重點與逐條細節,並附上對應的文章錨點連結:


1. Google MCP 改進呼籲 1

  • 重點:要求Google改善Workspace應用的MCP支援。
  • 細節
    • 用戶呼籲在Google Issue Tracker上標註問題(#401270828)。
    • 批評Google Maps的MCP實作問題(REST API後端設計不良)。
    • 期望未來MCP開發需提升品質。

2. MCP Agent 工具開發 2

  • 重點:開源工具「MCP Agent」自動化搜尋文件內容。
  • 細節
    • 功能:自動抓取 llms.txt 文件,支援多網域與預設中心。
    • 應用:整合於Cursor編輯器,簡化開發者文件存取流程。
    • 設計理念:自然語言觸發,免除手動管理。

3. 對AI炒作(MCP)的批判 3

  • 重點:呼籲理性評估AI技術(如MCP)。
  • 細節
    • 批評非專業人士(如「AI狂熱者」)過度宣傳。
    • 強調需依賴專業開發者或科學家的分析。

4. Jupyter Notebook MCP 整合 4

  • 重點:Claude AI透過MCP控制Jupyter Notebook。
  • 細節
    • 功能:自然語言操作儲存格、多語言代碼執行。
    • 案例:自動生成教學內容與統計分析。
    • 警示:實驗性工具需注意安全性。

5. Puppeteer MCP 教學(影片) 5

  • 重點:推測為瀏覽器自動化教學。
  • 細節:需用戶提供影片細節以進一步總結。

6. Dive 桌面應用更新 6

  • 重點:開源工具Dive支援多模型管理。
  • 細節
    • 新增功能:訊息編輯、回應重新生成、API金鑰驗證優化。
    • 目標:提升LLM開發效率。

7. WhatsApp MCP 協定開發 7

  • 重點:TypeScript實作WhatsApp多裝置登入。
  • 細節
    • 逆向工程WhatsApp通訊協定。
    • 潛在應用:聊天機器人、第三方客戶端。

8. D語言MCP伺服器函式庫 8

  • 重點:推測為遊戲模組開發工具。
  • 細節:需查閱GitHub倉庫確認具體功能。

9. Claude 隱私與技術問題 9

  • 重點:隱私保護與MCP伺服器連接錯誤。
  • 細節
    • 詢問Claude如何保障數據安全。
    • 技術問題:Node.js環境下伺服器斷連。

10. MCP 新手入門指南請求 10

  • 重點:尋求MCP設置與整合建議。
  • 細節
    • 關注兼容性、常見陷阱與資源分享。

11. OpenWebUI 更新與MCP橋接 11

  • 重點:強化多模型與傳統API整合。
  • 細節
    • v0.6.0新增MCP伺服器支援,降低AI後端串接門檻。

12. Rich Context AI 知識管理 12

  • 重點:解決資訊碎片化問題。
  • 細節
    • 自動整合多平台資料,強化情境脈絡。

13. 多租戶雲端的MCP架構討論 [13](#13-help-me-understand-mcp-in-a-multi-tenant-cloud-